North Dakota Silver Jackets Program Overview

North Dakota State Water Commission North Dakota Department of Emergency Services Mike Hall, ND Silver Jackets Coordinator

North Dakota Silver Jackets

...are a Flood Risk Management Team formed for the purpose of enhancing intergovernmental partnerships that result in comprehensive and sustainable flood risk reduction measures for North Dakota.

Includes representatives from:

- North Dakota State Water Commission
- North Dakota Department of Emergency Services
- U.S. Army Corps of Engineers
- FEMA
- NRCS, NWS, USFWS, USGS, NDGS

North Dakota Silver Jackets

N.D. Silver Jackets Projects Include:

- Aerial Photography and LiDAR Data Collection
- Community Assistance w/ Levee Safety Issues
- Development of Hydrologic and Hydraulic Models for Flood Emergency Preparedness Planning

North Dakota Silver Jackets

N.D. Silver Jackets Projects Include:

- Basin-Wide Precipitation and River Gage Analysis
- Facilitating Development of Emergency Action Plans
- Facilitating Flood-Proofing Workshops
- Collection of Data for Rural Flood Risk Reduction (i.e. the StARR Program)

Souris River Joint Water Resources Board

<u>Structure Acquisition, Relocation</u> or <u>Ring Dike (StARR) Program</u>

Section Overview

Mouse River Enhanced Flood Protection Project Overview
Part 1 – Urban Reaches
Part 2 – Rural Reaches
StARR Program Overview
Questions

 Following the 2011 Mouse River flood, residents within the valley needed information to make personal decisions

Initial Study Timeline was Condensed to 5 Months

Iterative, Transparent Process

- Stakeholder Input / Feedback / Approval
- Alignment Development / Alternatives
- Hydraulic Modeling
- Engineering Analysis / Design
- Compile analyses, references, and assumptions into Preliminary Engineering Report (PER)

October 5-7, 2011

Stakeholder Workshop Established Part 1 Constraints (including, but not limited to):

- Focus Initially on Developed Areas
- Design for 27,400 cfs
- Limit water surface elevation (WSE) increases over 2011 event
- Minimize impact to homes
- Incorporate 3 feet of freeboard
- Maintain critical transportation routes

November 3, 2011

Initial Concept Alignment was Released for Public Comment

November 8-10, 2011

Public Input Meetings

November 18, 2011

Potential High Flow Diversion Alignments Released

November 22, 2011

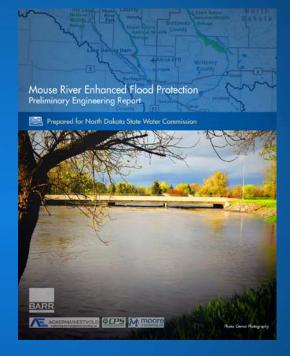
Public Input Meetings on Potential High Flow Diversion Alignments

January 31, 2012

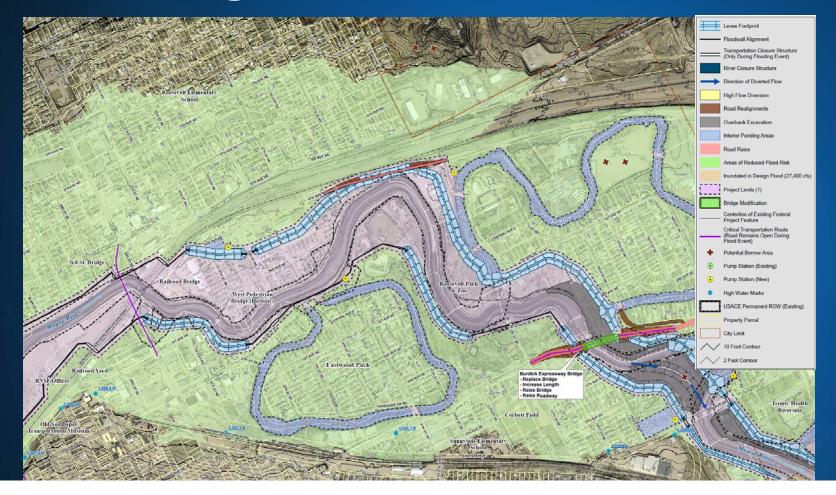
Minot City Council Meeting & Public Input Meeting

夏雨		Number of Affected Parcels						
de autor		Ramstad Alignment	Lincoln High	Maple High				
		(Existing River	Flow	Flow				
1		Channel with Levees	Diversion	Diversion				
1 1	Parcel Zoning	and Floodwalls)	Alignment	Alignment				
	General Commercial							
21	District	17	8	9				
1	Light Industrial District	0	1	6				
der.	Limited Commercial							
	District	1	1	1				
1	Residential Zoned /							
	Business Use	0	0	3				
La la	Residential Trailer Park	1	1	1				
	Residential Property with Buildings	188	156	96				
書	with Buildings	188	150	96				
	Residential Property							
ALE	without Buildings	39	11	14				
E	No Zoning /							
PER	Undeveloped	9	9	9				
1 mil	Public Zoned	6	2	3				
E	TOTAL	261	189	142				

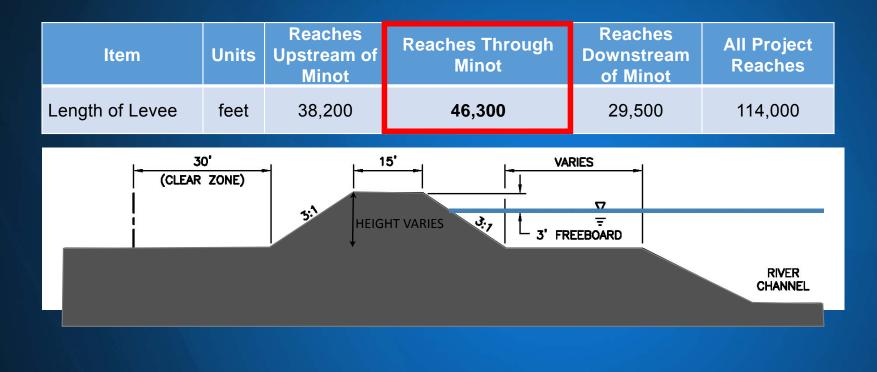
January 31, 2012


 City Council Selects Maple Diversion & 27th Street Diversion as Preferred Alignments

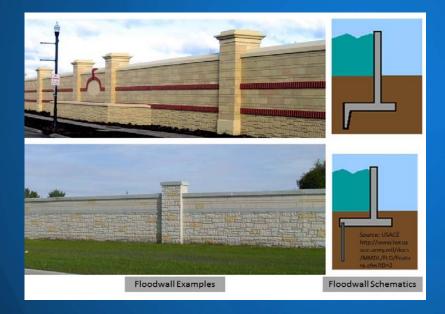
February 29, 2012


Preliminary Engineering Report is Released

April 12, 2012

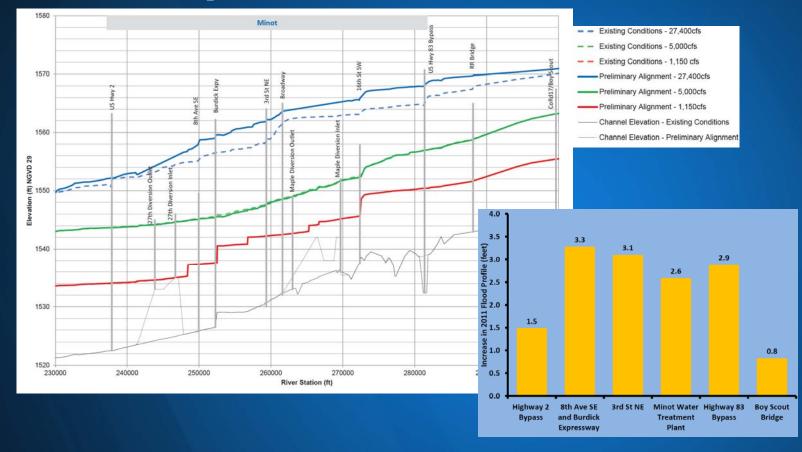

- Minot City Council Adopts Footprint of Preliminary Engineering Report
- Similar Actions Taken by Other Local Governments (Ward County, City of Burlington, etc.)

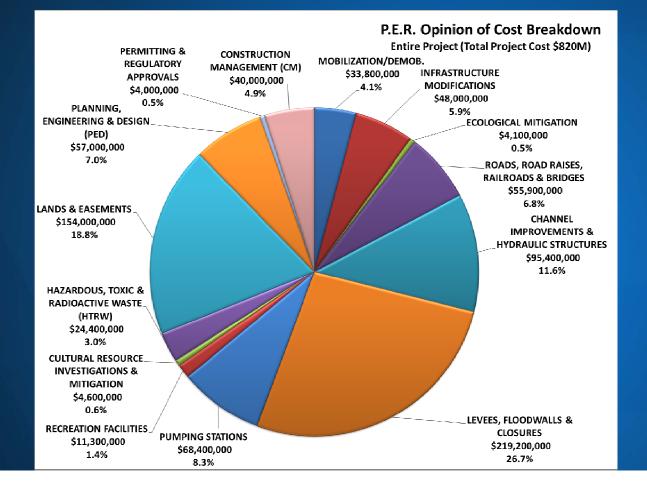
Part 1 – Alignment Features



Preliminarily alignment contains 8 ³/₄ miles of levees in Minot

Preliminarily alignment contains 2 ¹/₄ miles of floodwalls in Minot


ltem	Units	Reaches Upstream of Minot	Reaches Through Minot	Reaches Downstream of Minot	All Project Reaches
Length of Levee	feet	1,100	11,800	2,000	14,900


Preliminarily alignment contains 2 high flow diversions in Minot

Preliminary alignment will increase 2011 flood profile

Opinion of Probable Cost – Part 1 \$820 Million (Burlington to Velva & MRP)

Developing Part 2 (Rural Reaches) Rural Workshop February 16, 2012

- Identify issues for flow rate ranges
 - 500 cfs, 1,500, 3,000, 5,000, >7,000
- Discuss timing of dam releases
- Discuss infrastructure issues
- Discuss perceived impacts of wildlife refuges
- Discuss county-specific issues
 - Renville Co: Transportation
 - Ward Co.: Rural Subdivisions
 - McHenry Co.: Cropland and Hayland flooding & Sedimentation
 - Bottineau Co.: Conveyance

Developing Part 2 (Rural Reaches) Rural Workshop February 16, 2012

Agricultural Impacts

Flow Classification	Velva Area (cfs)	Towner Area (cfs)
Bankfull	1,500	500
Problematic	3,000	3,000
Catastrophic	10,000	10,000

Infrastructure Impacts

Flows (cfs)	Degree of Severity				
2,000 to 5,000	Manageable and relatively minor				
5,000 to 7,000	Major				
7,000 and up	Catastrophic				

Target Flows at the Verendrye Gage

Date	Target Flow (or less)
May 1	1,500
May 30 through November 1	500

Developing Part 2 (Rural Reaches)

- Hydrologic and Hydraulic Modeling of Mouse River in ND
- Evaluation of 12 Alternatives to Reduce Flooding Impacts in Rural Areas
- Desktop Evaluation of Erosion and Sedimentation
- Ongoing Meetings and Coordination

Developing Part 2 (Rural Reaches)

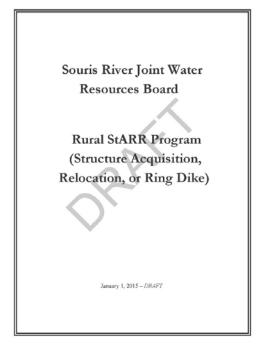
Needed to obtain answers for three primary questions:

- 1. Is the alternative effective at reducing the risk of flood impacts? (impacts to agriculture and/or infrastructure)
- 2. Are there potential impacts to key resources or concerns if the alternative is implemented or constructed?
- 3. What is the relative cost of the alternative, as compared to the other alternatives?

	Effectiveness /	Assessment	Implementation Evaluation			
Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range	
ALTERNATIVE 1 Advanced Discharge from Lake Darling	Effective at reducing duration of inundation from Velva to Bantry during 1999 and 2001 floods; also somewhat effective for the 1975 and 1979 floods	Minor reduction of impacts for other select floods		Concerns about increased winter discharges; requires modification of Annex A; possible water rights and refuge compatibility issues	\$ Minimal capital cost	
ALTERNATIVE 2 Increased Target Discharge at Minot	Minor reduction of impacts for the 2011 flood; effective at reducing duration of inunda- tion from Velva to Bantry for the 1975, 1976, and 1979 floods	Minor reduction of impacts for the 2011 flood; infra- structure impacts worsened for the 1975, 1976, and 1979 floods	8	Increased inundation for some floods; more homes in 100-year floodplain; pos- sible water rights and refuge compatibility issues	\$ Minimal capital cost	
ALTERNATIVE 3 Non-Structural Flood Storage Increase in Lake Darling	Effective at reducing duration of inundation from Velva to Bantry for the 1970, 1974, 1975, 1976, and 1979 floods	Minor reduction of impacts for other select floods		Concerns about increased winter discharges; requires modification of Annex A; pos- sible water rights and refuge compatibility issues (more so than Alternative 1)	\$ Minimal capital cost	

	Effectiveness /	Assessment	Implementation Evaluation			
Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range	
ALTERNATIVE 4 Structural Flood Storage Increase in Lake Darling	Minor reduction of impacts for the 2011 flood	Minor reduction of impacts for the 2011 flood		Relocations, cost, coordination with Canada, recreational concerns	\$\$\$ (\$200-700 million)	
ALTERNATIVE 5 Ring Dikes	No agricultural impact reduc- tion (ring dikes only protect structures)	Effective at reducing impacts to buildings for floods up to the 2011 magnitude flood, but no reduction of impacts to roadways, railroads, or bridges	Ø	Individual landowners must provide cost share and con- duct maintenance	\$\$ (\$10-50 million)	
ALTERNATIVE 6 Boundary Diversion	Effective at reducing impacts for the 2011 flood in all reaches	Effective at reducing impacts for the 2011 flood in all reaches	8	Major negative impacts likely for many of the criteria, including permits, impacts to Canada, relocations, constructability	\$\$\$\$ (\$2-8 billion)	

	Effectiveness /	Assessment		Implementation Evaluation	
Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range
ALTERNATIVE 7: Channelization Improvements Downstream of Velva	Minor reduction of impacts	For the Velva to Bantry reach, effective at reducing impacts to buildings for the 2009 flood; minor reductions in impacts to roadways and railroads for the 2009, 2010, and 2011 floods	8	Likely difficulty in obtaining USACE permit for channel excavation	\$\$ (\$100-400 million)
ALTERNATIVE 8 Bridge Modifications	Minor reductions of impacts	Effective at reducing impacts to bridges, but minor or no reduction of impacts to buildings, roadways, or railroads	0	Some environmental and erosion/sedimentation impacts	\$\$ (\$30-100 million)
ALTERNATIVE 9 Modify JCSNWR Dam Operations	Minor reduction of impacts for the 2010 flood in the Bantry to Westhope reach	Minor reduction of impacts to roadways and railroads for the 2010 flood in the Bantry to Westhope reach	8	Likely difficulty in obtaining USFWS and USACE permits; compatibility issues with refuge missions	\$ Minimal capital cost


	Effectiveness Assessment Implementation Evaluation				
Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range
ALTERNATIVE 10 Modify JCSNWR Hydraulic Structures	Minor reduction of impacts for the 2009, 2010, and 2011 floods in the Bantry to Westhope reach	Minor reduction of impacts for the 2009, 2010, and 2011 floods in the Bantry to Westhope reach	8	Likely difficulty in obtaining USFWS and USACE permits; compatibility issues with refuge missions	\$\$ (\$30-100 million)
ALTERNATIVE 11 Remove Trapped Water after the Flood Recedes	Impact reduction is likely if (1) topography allows the trapped water to be conveyed back to the channel by gravity and (2) elevation of the river has receded below the drain outlet by approximately May 31	Minimal reduction of impacts expected; de- pends on final locations implemented	Ø	Concerns about erosion downstream of culverts; ongoing maintenance to maintain effectiveness	\$ (\$3-10 million)
ALTERNATIVE 12 Flood Storage on Tributaries to the Mouse River	50% and 70% reduction scenarios are effective at re- ducing inundation during the 2009 and 2010 floods	50% and 70% reduction scenarios are effective at reducing inundation dur- ing the 2009 and 2010 floods		Site identification; possible difficulty in obtaining permits	\$\$ (\$10-340 million)

Evaluation of 12 Alternatives

	Effectiveness /	Assessment		Implementation Evaluation			Effectiveness Assessment		Implementation Evaluation		
Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range	Alternative	Agricultural Impact Reduction	Infrastructure Impact Reduction	Overall Imple- mentability	Greatest Challenges	Anticipated Cost Range
ALTERNATIVE 1 Advanced Discharge from Lake Darling	Effective at reducing duration of inundation from Velva to Bantry during 1999 and 2001 floods; also somewhat effective for the 1975 and 1979 floods	Minor reduction of impacts for other select floods	Ø	Concerns about increased winter discharges; requires modification of Annex A; possible water rights and refuge compatibility issues	\$ Minimal capital cost	ALTERNATIVE 7: Channelization Improvements Downstream of Velva	Minor reduction of impacts	For the Velva to Bantry reach, effective at reducing impacts to buildings for the 2009 flood; minor reductions in impacts to roadways and railroads	8	Likely difficulty in obtaining USACE permit for channel excavation	\$\$ (\$100-400 million)
	Minor reduction of impacts for the 2011 flood; effective at	Minor reduction of impacts for the 2011 flood; infra-	8	Increased inundation for some floods; more homes	\$ Minimal			for the 2009, 2010, and 2011 floods			
at Minot	reducing duration of inunda- tion from Velva to Bantry for the 1975, 1976, and 1979 floods	structure impacts worsened for the 1975, 1976, and 1979 floods		in 100-year floodplain; pos- sible wa compatil	capital cost	R Progr	Minor reductions of impacts	Effective at reducing impacts to bridges, but minor or no reduction of impacts to buildings, roadways, or railroads	0	Some environmental and erosion/sedimentation impacts	\$\$ (\$30-100 million)
ALTERNATIVE 3 Non-Structural Flood Storage Increase in Lake Darling	Effective at reducing duration of inundation from Velva to Bantry for the 1970, 1974, 1975, 1976, and 1979 floods	Minor reduction of impacts for other select floods		inter d modification or Annex A, pos- sible water rights and refuge compatibility issues (more so than Alternative 1)	capital cost	Modify JCSNWR Dam Operations	for the 2010 flood in the Bantry to Westhope reach	Minor reduction of impacts to roadways and railroads for the 2010 flood in the Bantry to Westhope reach	8	Likely difficulty in obtaining USFWS and USACE permits; compatibility issues with refuge missions	\$ Minimal capital cost
	Minor reduction of impacts for the 2011 flood	Minor reduction of impacts for the 2011 flood	8	Relocations, and coordination with Canada, recreational concerns	\$\$\$ (\$200-700 minute)	ALTERNATIVE 10 Modify JCSNWR Hydraulic Structures	Minor reduction of impacts for the 2009, 2010, and 2011 floods in the Bantry to Westhope reach	Minor reduction of impacts for the 2009, 2010, and 2011 floods in the Bantry to Westhope reach	8	Likely difficulty in obtaining USFWS and USACE permits; compatibility issues with refuge missions	\$\$ (\$30-100 million)
ALTERNATIVE 5 Ring Dikes	No agricultural impact reduc- tion (ring dikes only protect structures)	Effective at reducing impacts to buildings for floods up to the 2011 magnitude flood, but no reduction of impacts to roadways, railroads, or bridges	0	Individual landowners must provide cost share and con- duct maintenance	\$\$ (\$10-50 million)	ALTERNATIVE 11 Remove Trapped Water after the Flood Recedes	Impact reduction is likely if (1) topography allows the trapped water to be conveyed back to the channel by gravity and (2) elevation of the river has receded below the drain outlet by approximately May 31	Minimal reduction of impacts expected; de- pends on final locations implemented	0	Concerns about erosion downstream of culverts; ongoing maintenance to maintain effectiveness	\$ (\$3-10 million)
ALTERNA IN EXAMPLE Boundary Diversion	Effective at reducing impacts tor the 2011 fleed in all reaches	Effective at reducing impacts for the 2011 flood in all reaches	8	Major negative important likely for many of the criteria, including permits, impacts to Canada, relocations, constructability	\$\$\$\$ (\$2-8 billion)	ALTERNATIVE 12 Flood Storage on Tributaries to the Mouse River	50% and 70% reduction scenarios are effective at re- ducing inundation during the 2009 and 2010 floods	50% and 70% reduction scenarios are effective at reducing inundation dur- ing the 2009 and 2010 floods		Site identification; possible difficulty in obtaining permits	\$\$ (\$10-340 million)

StARR Program Document and Rules Currently in <u>DRAFT</u> Form

- Modifications Based on Input from Rural Residents
- Modifications Based on Input from Funding Agencies
- Final Policy Determination by Souris River Joint Board

SRJB Will Provide Financial and Technical Assistance to:

- Remove Structures from 2011 Flood Plain
 - Purchase and Demolition (Acquisition)
 - Relocation to Higher Ground
- Protect Structures within 2011 Flood Plain
 - Construction of Ring Dikes
 - Will not Remove Requirement for Flood Insurance

Land Owners Will Agree to:

- Provide Access to the Property
 - Right of Entry Agreement
- Prevent Construction of Future Structures within 2011 Flood Plain
 - Funding Agency Requirements
 - No-Build Easements, Deed Restrictions, etc.
 - Acquisition of Property in Some Circumstances

The Process:

- 1. Contact by Interested Land Owner / Right of Entry Authorized
- 2. Determine Eligibility of Structure(s)
 - In 2011 Flood Plain, In 100-Year Flood Plain, Previously Abandoned, etc.
- 3. Appraisals of Structure(s)
 - Establishes Maximum Participation from SRJB
- 4. Selection of Risk Reduction Method (Acquisition, Relocation, Ring Dike)
- 5. Implementation and Closing

StARR Program Overview

Current Unknowns:

- Final Policy Determination
 - Input from Stakeholders
 - Input from Funding Agencies (SWC, Minot, etc.)
 - Action by SRJB
- Local Cost Share
 - There will be a local cost share requirement (5%-25%)
 - SRJB is working to minimize local cost share through ongoing work with funding agencies (SWC, Minot, County Commissions, etc.)

StARR Program Overview

Preliminary Schedule:

- Rights of Entry Secured by May 2015
- USACE / Silver Jackets Field Work Completed August 2015
- USACE / Silver Jackets Final Report Completed October 2015
- Final Policy Determination October 2015
- Implementation Start November 2015
- Implementation Complete November 2017

StARR Program Status

http://gis.ackerman-estvold.com/apps/starr/

Questions?

USACE Nonstructural Flood Proofing Workshop

NFPC and Nonstructural Mitigation Overview by Randall Behm USACE - Omaha District Chair, National Nonstructural Flood Proofing Committee

Silver Jackets State Team Development

The Silver Jackets program provides a formal and consistent strategy for an interagency approach to planning and implementing measures to reduce the risks associated with flooding and other natural hazards

- 44 Active Interagency Teams
- USACE Support:
 - ► USACE Authorities
 - Collaborative access to additional agency programs and authorities
 - Interagency and Peer networking: SJ Website, Newsletter, Annual Workshops, Periodic Webinars with Partner Agencies

Silver Jackets Website http://www.nfrmp.us/state/index.cfm

USACE Nonstructural Flood Proofing Committee

Committee Members and Advisors

The USACE National Nonstructural Flood Proofing Committee (NFPC) was established during 1985 to support nonstructural mitigation activities within USACE. The NFPC functions under the general direction of the Chief, Planning Community of Practice, Directorate of Civil Works, HQUSACE. Currently the NFPC consists of four active multidisciplinary members and four advisors.

Members

- Chair: Randall Behm, Omaha District
- Secretary: Kim Gavigan, Los Angeles District
- Steve O'Leary, Huntington District
- Keven Lovetro, New Orleans District

Advisors

- Robert Finch, Honolulu District
- Mary Weidel, Detroit District
- Lea Adams, Hydrologic Engineering Center
- Brian Rast, Kansas City District

National Nonstructural Flood Proofing Committee

web site: http://www.nwo.usace.army.mil/nfpc/

email NFPC committee: dll-cenwo-nfpc@usace.army.mil

Publications Digital Nonstructural Video Charts and Graphs Photographs Technical Support National Flood Barrier Testing Program USACE Program Authorities

USACE District Contact Information http://www.usace.army.mil/Locations.aspx

National Flood Barrier Testing & Certification Program

The Association of State Flood Plain Managers (ASFPM), in partnership with FM Approvals and the USACE National Nonstructural Flood Proofing Committee (NFPC) are implementing a National program of testing and certifying flood barrier products used for flood proofing and flood fighting. This program currently tests barrier products in two broad categories, **Temporary Flood Barriers** and **Closure Devices**.

The purpose of this Program is to provide an unbiased process of evaluating products in terms of resistance to water forces, material properties, and consistency of product manufacturing. This will be accomplished by testing the product against water related forces in a laboratory setting, testing the product against material forces in a laboratory setting, and periodic inspection of the product manufacturing process for consistency of product relative to the particular product that received the original water and material testing.

web: http://nationalfloodbarrier.org/

Nonstructural Flood Risk Management Definition

Nonstructural flood risk management can be categorized as a set of **physical** or **nonphysical** measures utilized for mitigating loss of life as well as existing and future flood damages.

The physical measures adapt to the natural characteristics of the floodplain without adversely affecting or changing those natural flood characteristics. These measures are generally compliant with the NFIP and cause no adverse affects to the floodplain, flood stages, velocities, or the environment.

Because of their ability to adapt to flood risk, these measures may also be referred to as **Flood Risk Adaptive Measures (FRAM)** and can be incorporated into existing or new structures to mitigate for potential future flood damages and life loss.

Definitions

Nonstructural: Measures such as elevation, relocation, and flood proofing adapt to the natural floodplain without changing flood characteristics. FRAM: Flood Risk Adaptive Measures

Structural: Measures such as levees, dams and channel modifications tend to change the characteristics of flooding, by altering the frequency of flooding.

North Dakota Flooding; Deep, Fast, and Dangerous

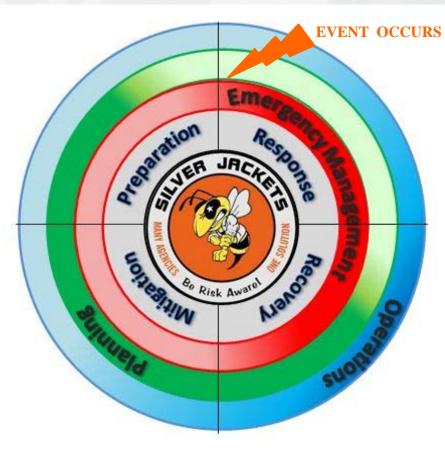
BUILDING STRONG_®

Is this the <u>new</u> Norm? (\$38B - \$54B Annually 2006-2013 or \$10B annually 1985-2013)

Hurricane Sandy

Colorado Flooding

Hurricane Katrina



Missouri River Flooding

Disaster Merry-Go-Round

The Cycle will always exist, but to what extent is our purpose

Flood Risk

Risk = *f* [(**Probability of Flooding**) **x** (**Consequences**)]

(Probability of Flooding) is the frequency of flooding or how often does flooding occur in a particular location. Reduce the frequency of flooding and risk is reduced.

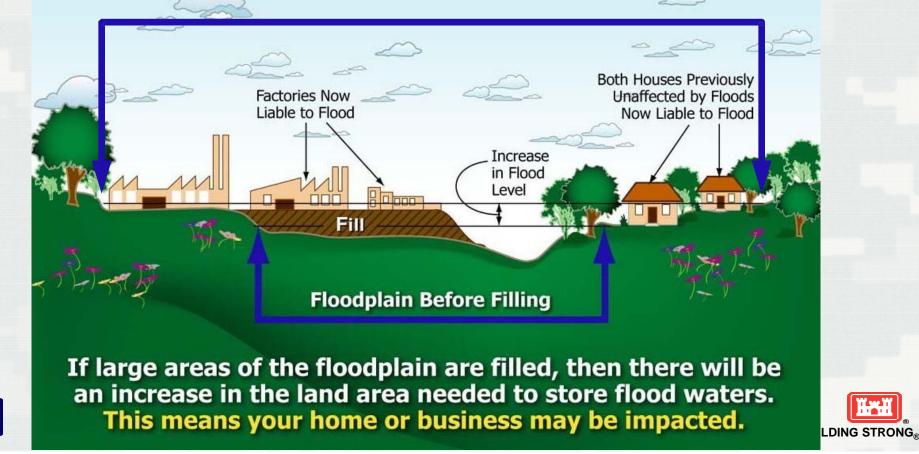
(Consequences) are the potential damages and life loss associated with flooding. The structures (critical, residential, commercial, public, and industrial), land use (agricultural, urban, public), and infrastructure (highways, roads, rail, utilities) make up the potentially damageable assets. Reduce the consequences of flooding and risk is reduced.

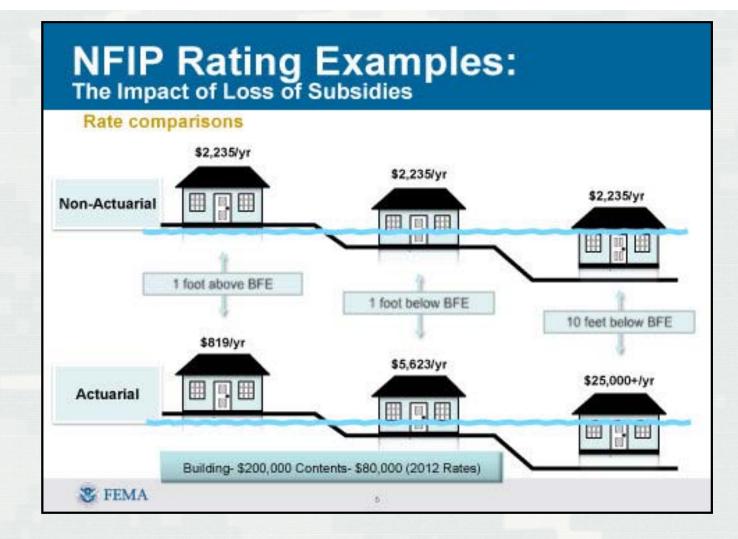
Note: If critical facilities become inoperative during a flood event the area of severe impact extends beyond the area of flooding (electrical service, communications, water and wastewater, etc).

What is Risk? The possibility of suffering harm or loss. Uncertainty of probability of occurrence.

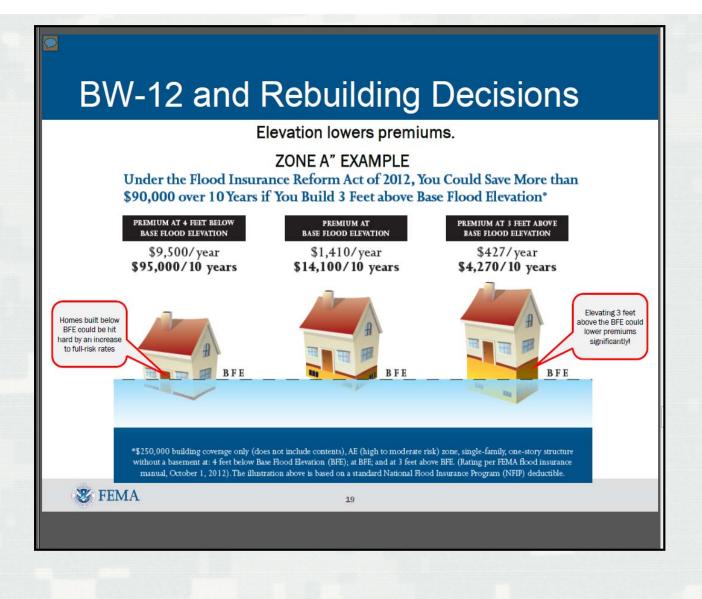
What is Risky Behavior???

(Mis)Managing Flood Risk




Flood Risk = Probability of Flooding x Consequences

.....


Today's Floodplain Is Not Necessarily Tomorrow's Floodplain

Nonstructural Flood Risk Adaptive Measures

- Elevation
- Relocation
- Buyout/Acquisition
- Wet Flood Proofing
- Dry Flood Proofing
- Individual Berms/Floodwalls
- Basement Removal

Floodplain Management Measures

While the following measures do not result in modification to structures to have them adapt to the characteristics of a flood, these measures provide benefits to large scale areas dealing with recurring and problematic flooding.

Flood Warning System

A flood warning system, when properly installed and calibrated, is able to identify the amount of time available for residents to implement emergency measures to protect valuables or to evacuate the area during serious flood events.

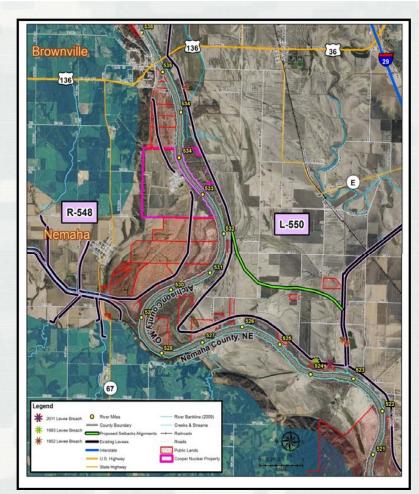
Land Use Regulations

Land use regulations within a designated floodplain are effective tools in reducing flood risk and flood damage. Based in the national principles of the National Flood Insurance Program (NFIP) which requires minimum standards of floodplain regulation, land use regulations may identify where development can and cannot occur, or to what elevation structures should locate their lowest habitable floor.

Flood Emergency Preparedness Plans

Local governments, through collaboration with USACE, FEMA and other interested federal partners, are encouraged to develop and maintain a Flood Emergency Preparedness Plan (FEPP) that identifies flood hazards, risks and vulnerabilities, identifies and prioritizes mitigation actions, and encourages the development of local mitigation. The FEPP should incorporate the community's response to flooding, location of evacuation centers, primary evacuation routes, and post flood recovery processes.

Flood Insurance (Biggert-Waters Flood Insurance Reform Act of 2012 / Homeowners Affordability Act 2014) Flood insurance policies cover physical damage to property and possessions.



Floodplain Evacuation (levee setback)

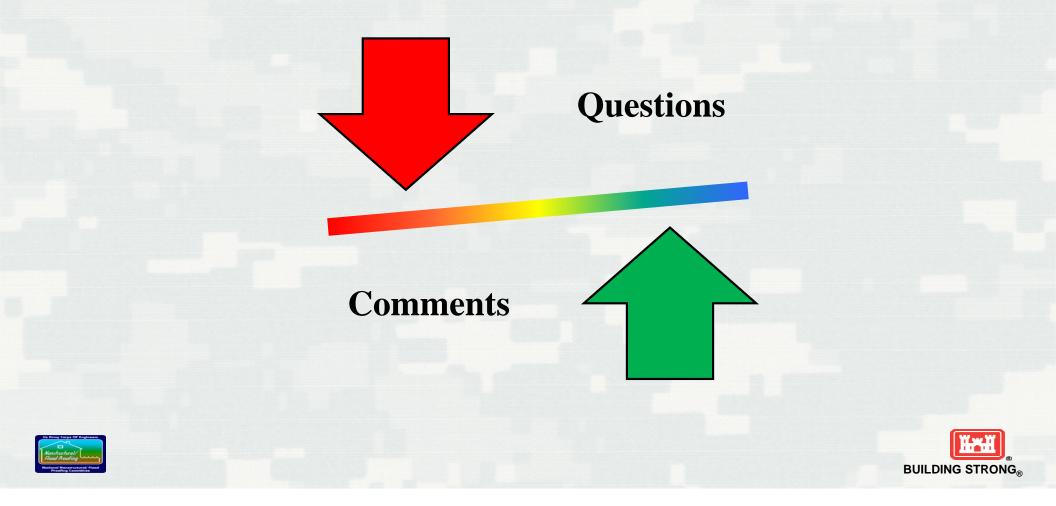
Target levee segments which have encountered repetitive flood damages

- Reduces Flood Stages
- Reduces Erosive Velocities
- Increases System Reliability
- Increases System Sustainability
- Restores Historic Floodplain
- Increases Habitat Benefits
- Potentially Economically Feasible when compared to Repairs In-Place

* Caution Caution Caution *

While nonstructural flood risk adaptive measures <u>may</u> result in lower property damages, there could be potential restrictions which the property owner <u>needs</u> to investigate prior to implementation:

- Local Ordnances
- State Regulations
- National Flood Insurance Program (NFIP)


Not all of the methods shown in this workshop will comply with local code or the NFIP minimum requirements and may not be creditable for flood insurance savings. USACE is focusing on <u>damage reduction</u>.

Flood insurance is always recommended, even for structures which may have been retrofitted with nonstructural measures

NFPC and Nonstructural Mitigation Overview



USACE Nonstructural Flood Proofing Workshop

Overview of Nonstructural Techniques by Mary Weidel Detroit District National Nonstructural Flood Proofing Committee Advisor

Nonstructural Flood Proofing Measures For Flood Risk Reduction

Options:

- 1) Elevation
- 2) Acquisition / Buyout / Demolish
- 3) Relocation
- 4) Berms, Levees, and Walls
- 5) Dry flood proofing
- 6) Flood Warning & Emergency Evacuation Systems
- 7) National Flood Insurance Program
- 8) Flood Plain Management
- 9) Regulation of Flood Prone Land
- 10) More Stringent Regulations (NAI)

Elevation Methods

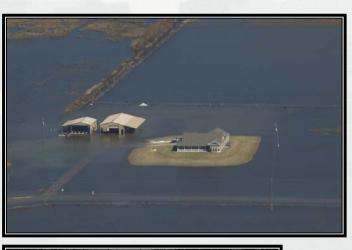
Options:

- Elevation Utilizing Fill
- Extended Foundation Walls
- Slab on Grade
- ► Piers, Posts, and Columns
- ► Pilings

Elevation...

...is one of the most common and effective methods used to prevent flooding of living space.

...should be designed by registered engineers or architects and constructed by qualified contractors



Elevation Methods

Utilizing Fill to Elevate

 $\textbf{BUILDING STRONG}_{\texttt{R}}$

Elevation Methods

Extended Foundation Walls

- Not permitted in V Zones
- Not recommended in Coastal A Zones
- Not permitted in regulatory floodway
- ► Acceptable in A Zones

Elevation by Extended Foundation Wall

BUILDING STRONG_®

Elevation Using Segmented Piles

Elevation Using Piers, Posts & Columns

Acquisition / Buyout

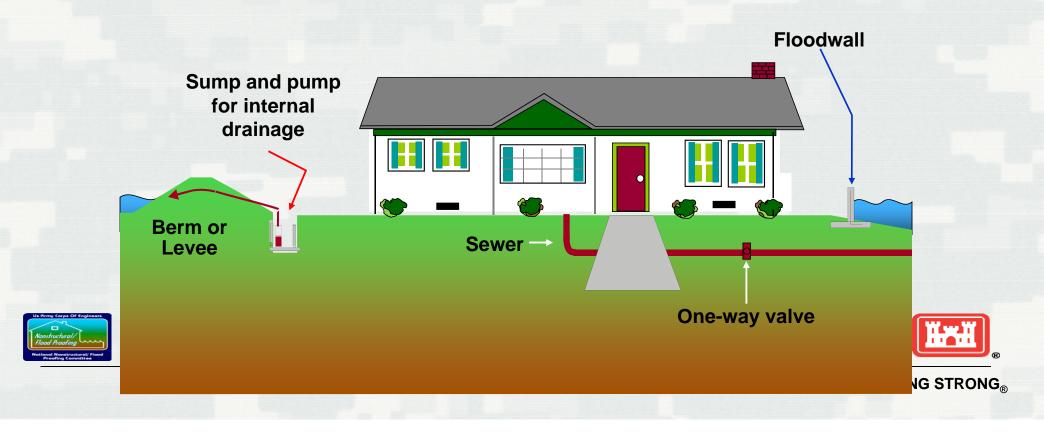
Partnerships - Combination

New Use Ecosystem

Relocations



- Eliminates Risk
- New Use Open Space



► Reduce Flood Insurance

Berms, Levees and Floodwalls

Levees / Berms

Not FEMA Accredited
 Interior drainage

► Reduce Risk

BUILDING STRONG®

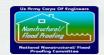
Barriers / Walls

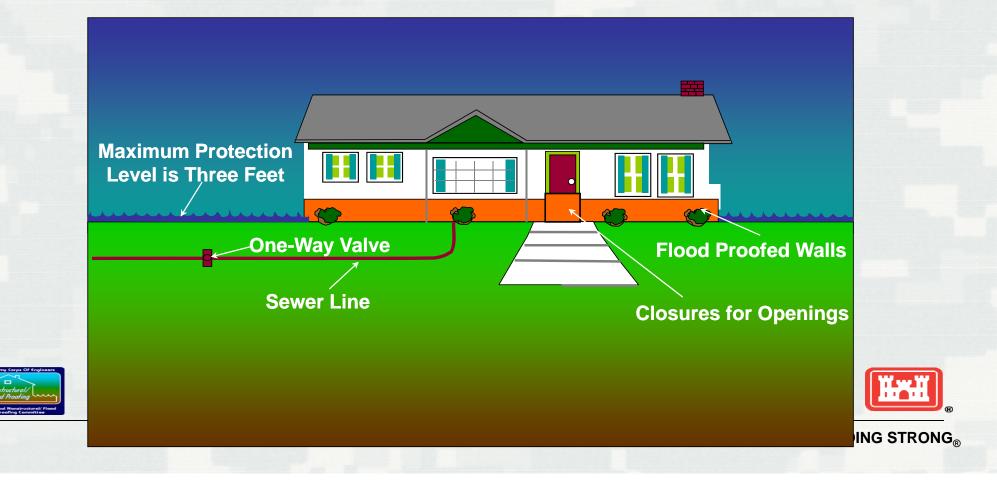
Closures & level of protection considerations

Barriers / Walls

► Barriers/walls in action

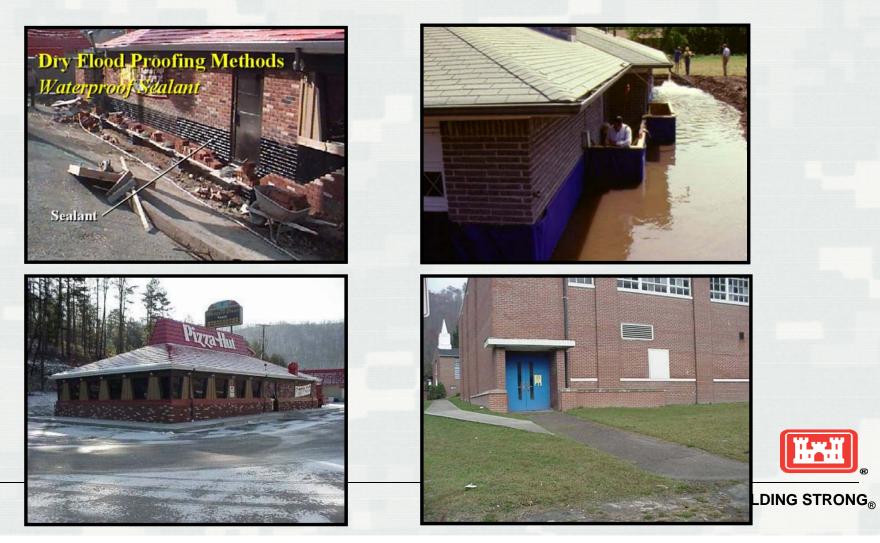
Understand Application


This measure involves sealing the walls of a structure with waterproofing compounds, impermeable sheeting or other materials and using closures for covering and sealing openings from flood waters


Simply stated...Make the Structure Water Tight

- Flood depths 3 feet or less
- Structurally sound buildings
- New construction
- Retrofitting existing buildings
- No basement or crawl space

BUILDING STRONG®



 $\textbf{BUILDING STRONG}_{\texttt{R}}$

Wet Flood Proofing

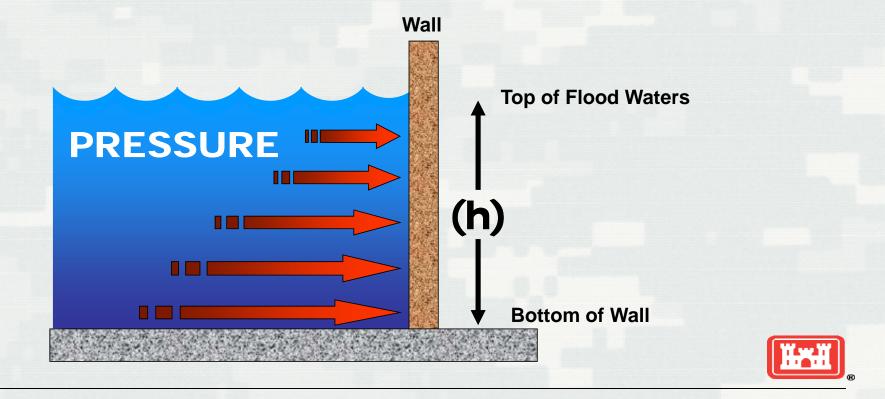
"Permanent or contingent measures applied to a structure and/or it's contents that prevent or provide resistance to damage from flooding by allowing flood waters to enter the structure" FEMA TB 7-93

Use of this method is limited under the National Flood Insurance Program (NFIP):

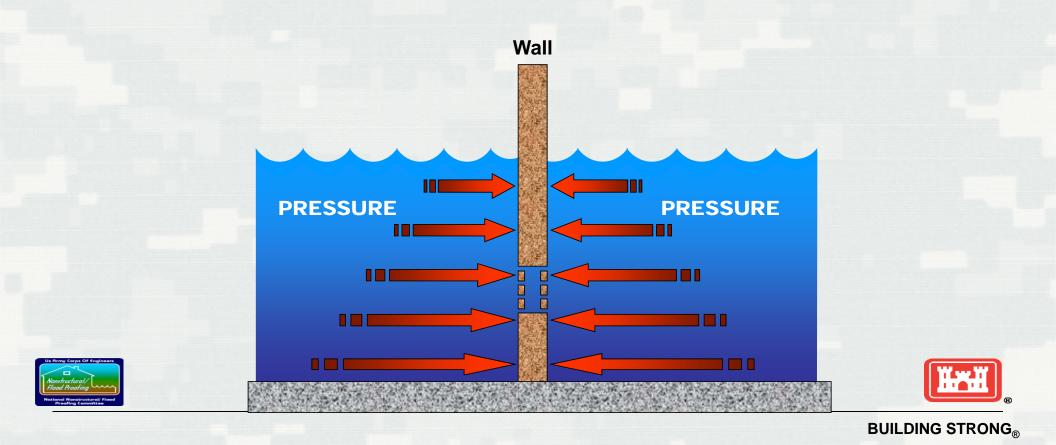
- Enclosed areas below the BFE that are used solely for parking, building access or limited storage
- Attached garages

Variances may be issued for the following situations:

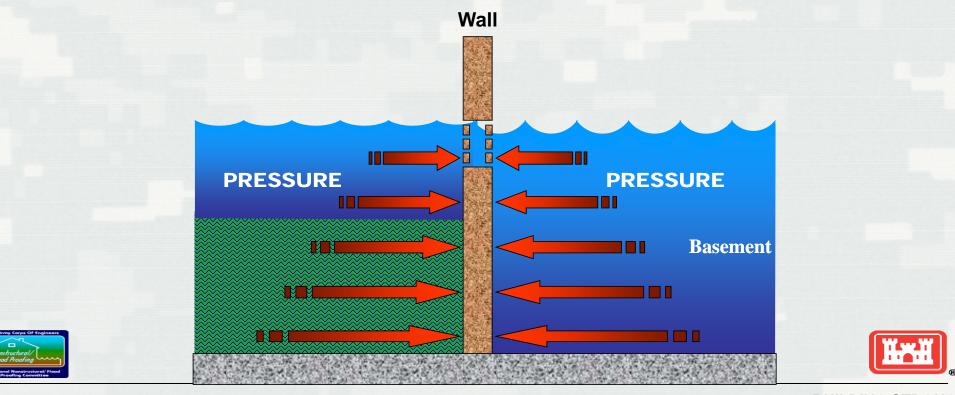
- Structures functionally dependent on close proximity to water
- Historic buildings
- Accessory structures
- Certain agricultural structures


BUILDING STRONG®

Wet Flood Proofing



Lateral Pressure Increases with Depth of Water (h)



BUILDING STRONG_®

Wet Flood Proofing Equalizes Pressures on the Structure

Wet Flood Proofing Equalizes Pressures on the Structure

BUILDING STRONG_®

Historic Areas

Flood Warning & Emergency Evacuation Plans

Warning Dissemination:

- Determine affected areas
- ► Identify affected parties
- Prepare warning message
- ► Distribute warning message
 - ► Weather radios
 - ► Media
 - ► Sirens
 - ► Public Education
 - ► Schools

Us Brmy Corps Of Engineers Nonstructural/ Fload Proofing Notional Nonstructural/ Fload Proofing Committee

► Reverse 911

BUILDING STRONG_®

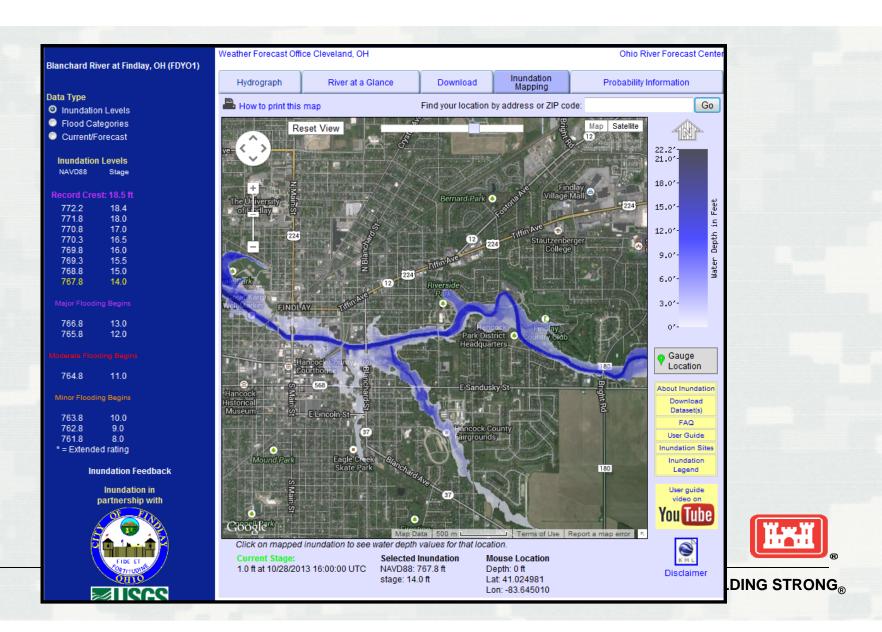
Flood Warning System – Flood Inundation Mapping

Who:

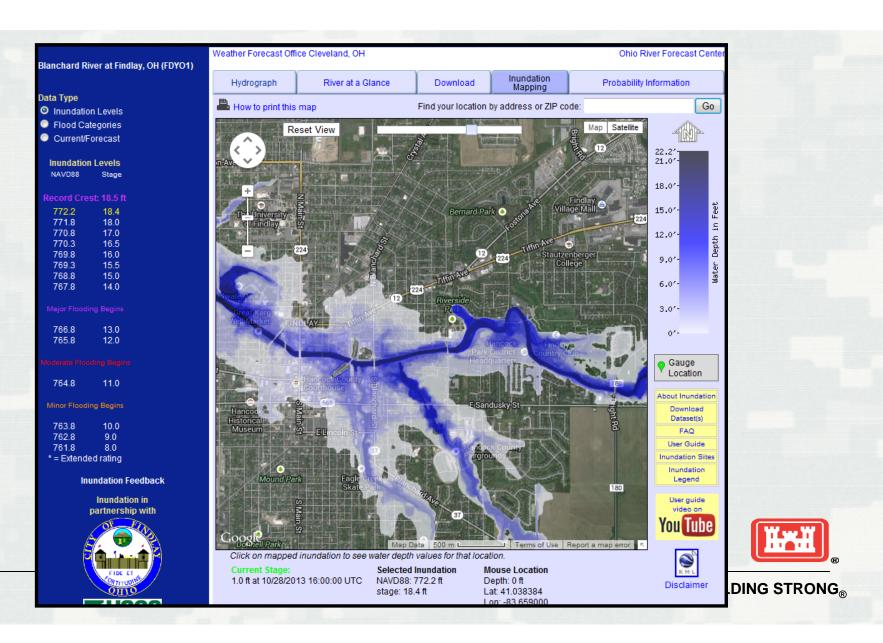
Multi-agency Partnership: NOAA-NWS, USGS, State Agencies, Community

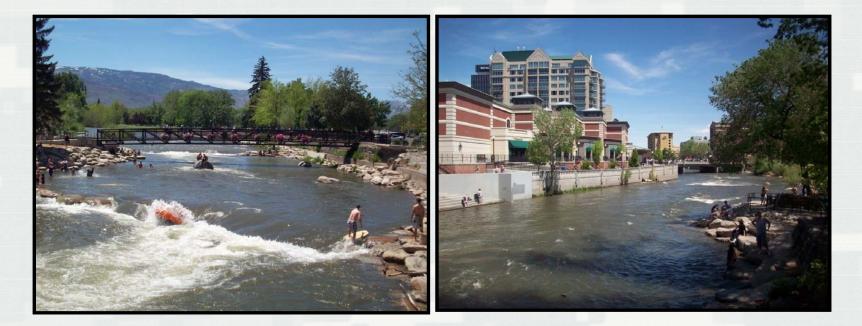
► USACE can assist


What:


- Creation of flood inundation maps through hydrologic analysis and hydraulic modeling
- Need USGS gage for this warning system

Flood Damages Savings:


► Warning of 24 hours can reduce damages up to 30%



Flood Warning Reno, NV Truckee River New Uses of Floodplain

BUILDING STRONG_®

Flood Plain Management

Effective and Responsible Flood Plain Management should be implemented through the following:

- 1) National Flood Insurance Program
- 2) Flood Plain Management
- 3) Regulation of Flood Prone Land
- 4) More Stringent Regulations (NAI)

BUILDING STRONG®

Low Impact Development

Alternatives:

- ► Rain Garden
- Planter Box
- Green Space

Low Impact Development

Alternatives:

- ► Green Vegetated Swale
- Porous Pavement

BUILDING STRONG_®

Key Take Away Points

Remember:

- Nonstructural methods can be done
- ► Nonstructural alternative analysis is required (USACE)
- Flood proofing WORKS
- Best option is don't build in a floodplain
- There must be partnerships and collaboration
- Include nonstructural alternatives early
- Assistance is available

BUILDING STRONG®

National Nonstructural/ Flood Proofing Committee

Questions / Comments

BUILDING STRONG_®

USACE Nonstructural Flood Proofing Workshop

Field Data Requirements

by Randall Behm USACE - Omaha District Chair, National Nonstructural Flood Proofing Committee

LLDING STRONG®

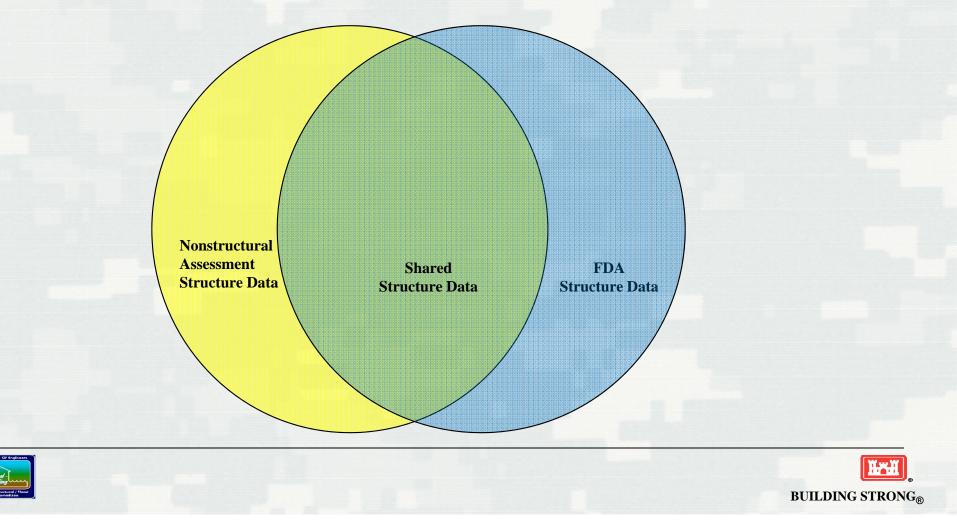
Nonstructural Flood Risk Adaptive Measures

The most common physical FRAM measures implemented for flood damage and life loss reduction are:

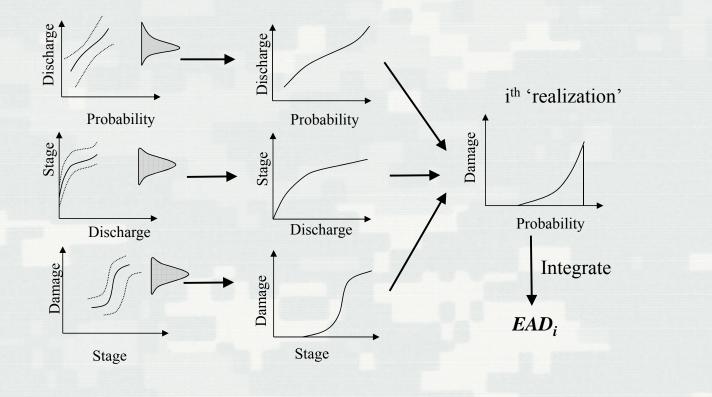
AcquisitionRelocationElevationDry Flood ProofingWet Flood ProofingBasement Removal

Nonphysical measures can be considered separately or as a combination of floodplain management and planning functions. Representative nonphysical measures are:

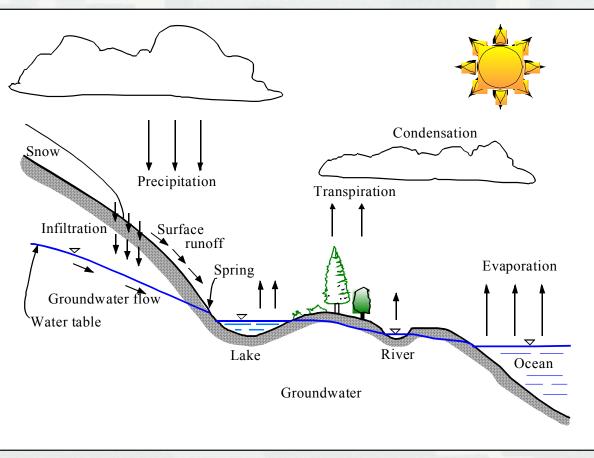
Floodplain Mapping Evacuation Plans Operational Changes Land UseFlood InsuranceFlood WarningZoningEmergency Preparedness Plans


What Analyses are Required for Formulating Nonstructural FRAM Measures

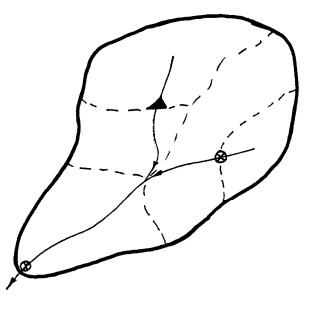
- > Develop Hydrology (flow of water)
- > Develop Hydraulics (depth and velocity of water)
- > Conduct Structure Inventory (what gets flooded)
- > Identify Potential Nonstructural FRAM Measures
- > Cost Estimates for FRAM Measures
- > Perform Economic Analyses (benefits determination)
- > Implementation Plan

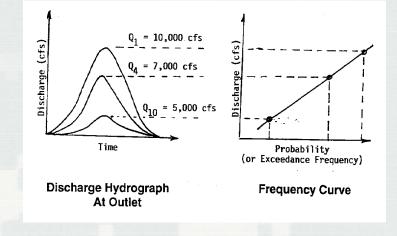


Data Needs Overlap Between Structural and FRAM

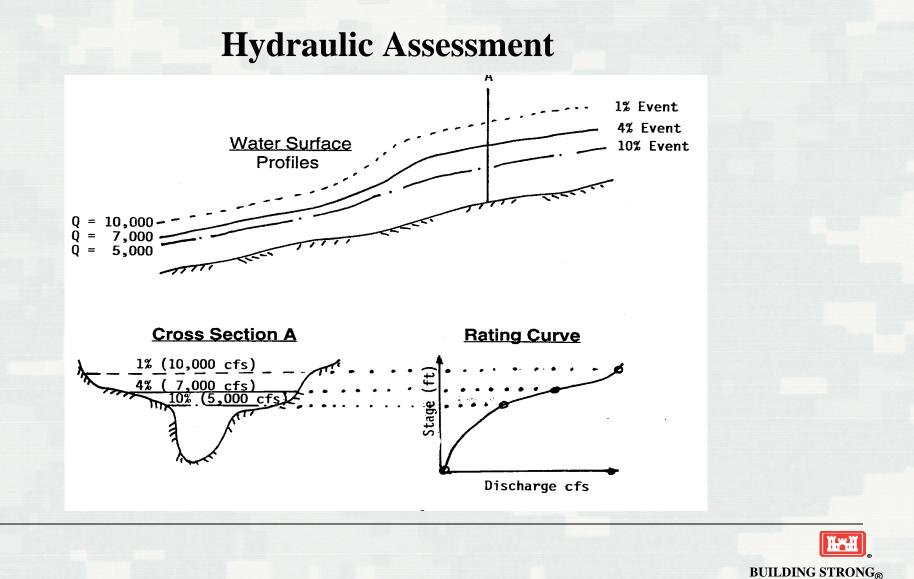

Flow-Frequency; Stage-Discharge; Damage-Frequency Relationships

BUILDING STRONG®


Hydrologic Cycle

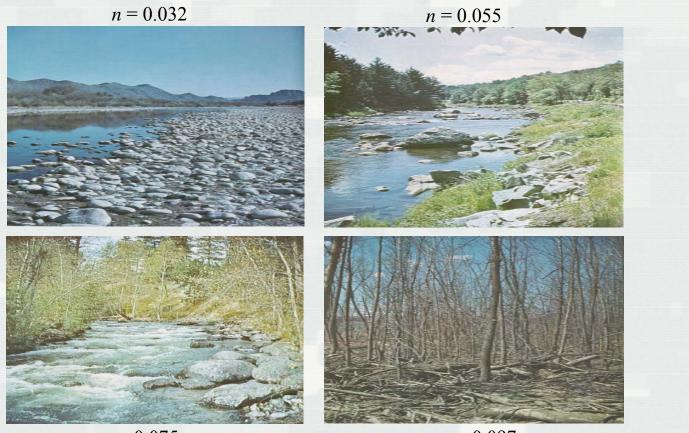

Hydrologic Studies

- Streamgage
- A Reservoir
- --- Subbasin Boundaries


Sub-basin Delineations

- Stream Topology
- Streamgage Locations
- Project Locations

Uncertainty in Stage Estimates


Some Factors that can Cause Uncertainty:

- ► Cross section shape, area, and roughness
- ► Debris and other obstructions
- ► Sediment transport, scour, and deposition
- ► Bedforms (changing with depth and temperature)
- ► Backwater effects
- ► Bridges, culverts, and other hydraulic structures
- ► Survey error

Manning's "n" values of Roughness (friction factors)

n = 0.075

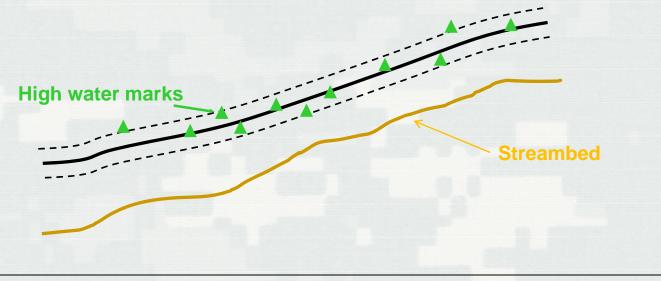
n = 0.097

Stage-Discharge Curves

Stage-Discharge Curves can be developed by the following methods:

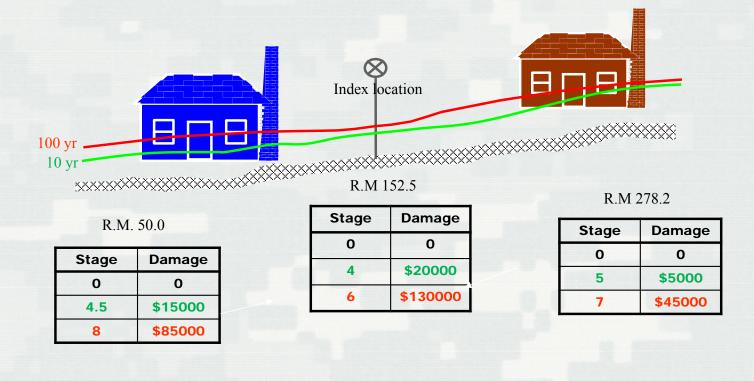
- Measured Streamflow Data (gaged locations)
- Computed Water Surface Profiles
 - Steady flow analysis
 - Unsteady flow analysis
 - Movable-bed analysis
 - Multi-dimensional (2D) modeling

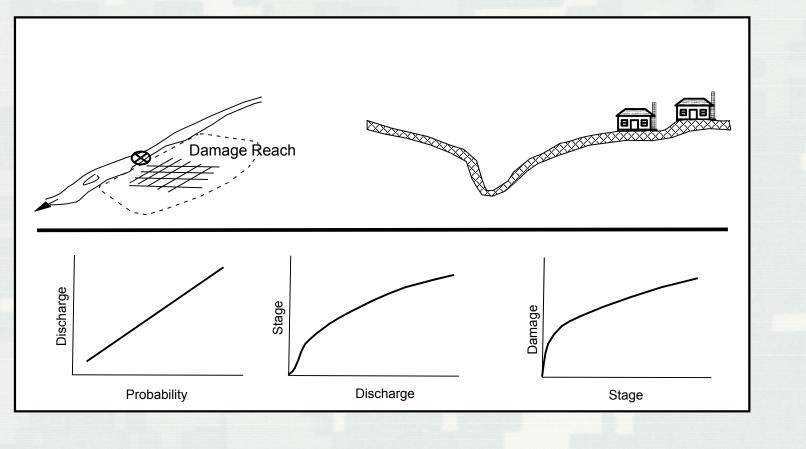
Stage	
	/


Discharge

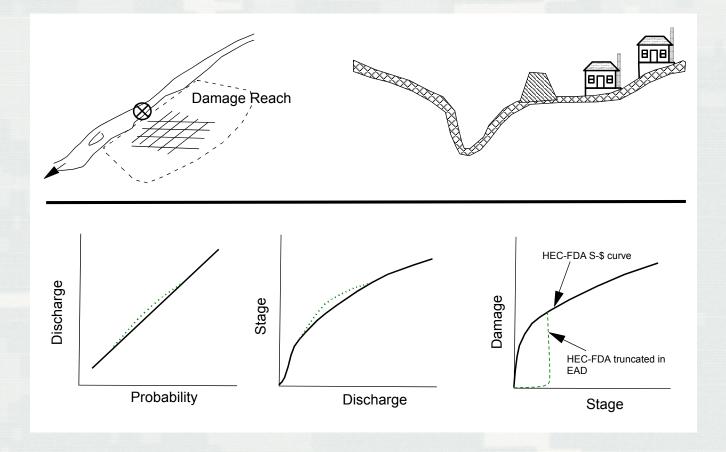
1.

Calibration and Sensitivity Analysis

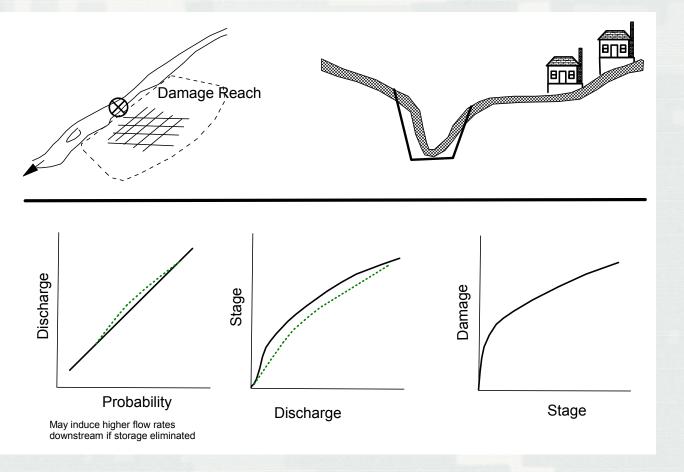

Calibrate to known elevations (adjust the computer model). Perform sensitivity analysis of key parameters.

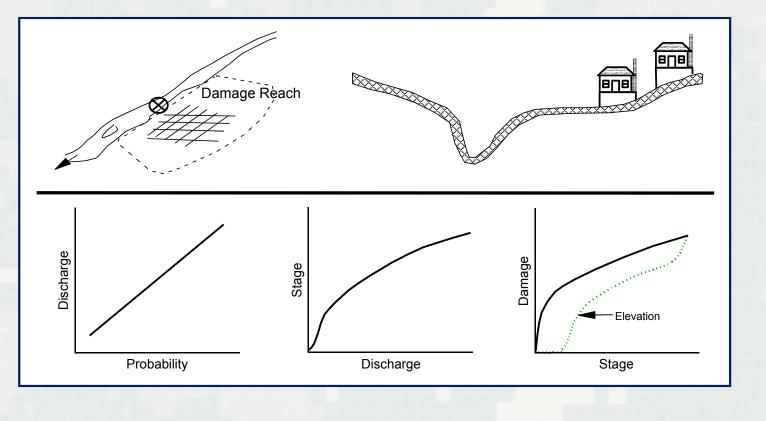


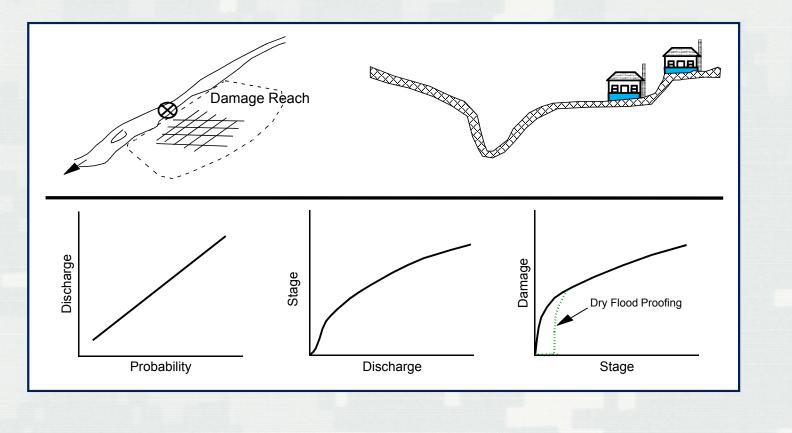
Culmination of Structure Damage to Index Location



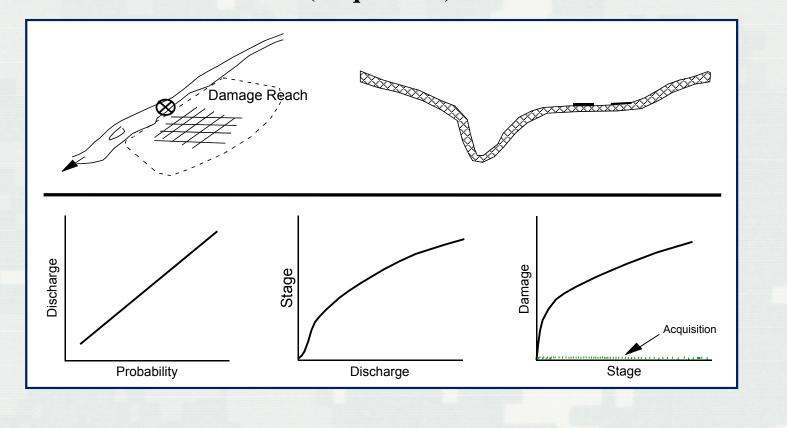
Evaluation of Existing Conditions


With Levee Conditions


With Channel Modification Conditions


Nonstructural Measure

(Elevation)



Nonstructural Measure (Dry Flood Proofing)

Nonstructural Measure (Acquisition)

Field Data Collection

Search for existing datasets:

County/City Assessors Database Previous Studies LiDAR

Obtain new data:

Surveys Homeowner / Business owner

Structure Inventory Data Collection

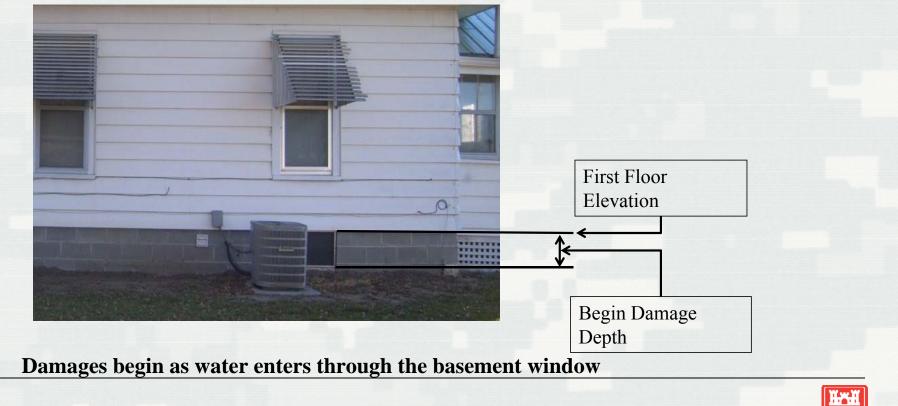
Structure Data	Data Definition					
Building Identification Number	Specific to Structure (geo referenced, coordinates, etc.)					
Structure Address	Specific Postal Location of Structure					
Critical Facility	Yes / No					
Lowest Adjacent Ground Elevation	Elevation of Lowest Ground at Structure					
First Floor Elevation	Elevation of Finished First Floor					
Structure Category	Residential, Commercial, Industrial, Public					
Structure Use	What is the Specific Use of Structure					
Total Stories	Total Number of Floors Above Grade					
Structure Footprint	Total Square Foot Area of At-Grade Floor					
Number of Structural Corners	Total Number of Corners in Perimeter					
Structure Foundation Type	Slab, Reinforced Slab, CMU, Piers, Columns, Posts, Stone					
Structure Perimeter Distance	Total Length of All Exterior Sides of Structure					
Exterior Wall Construction	Wood, Masonry, Brick, Metal, Stone, Concrete, Other					
Structure Visual Condition	Good / Fair / Poor					
Garage	Attached, Detached, None					
Doorways	Number of Pedestrian Doorways					
Basement	Full Basement, Half, Crawl Space, None					
Structure Photos	Photograph of Four Sides of Structure					
Utilities Location	Electrical, Gas, Water, Sewer, Oil, Propane, Coal, Other					
Structure Value	Assessed Value of Structure					
Fireplace	Yes / No					
Structure Owner	Who Owns the Structure					
Year Structure Built	Year Structure was Constructed (Any Historic Significance)					
Water Surface Elevation	Elevation or Depth of Water at Structure (H&H activity)					
Water Velocity	Erosive Potential of Flood Waters (H&H activity)					

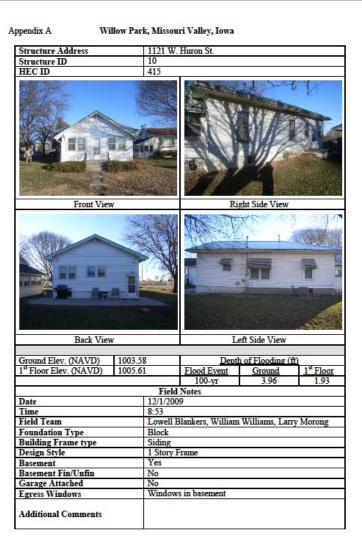
Sample Structure

Front View

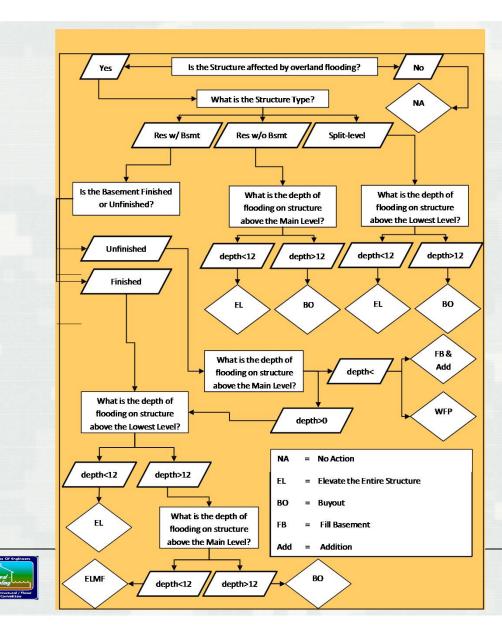
Left Side View

Sample Structure Field Data Collection

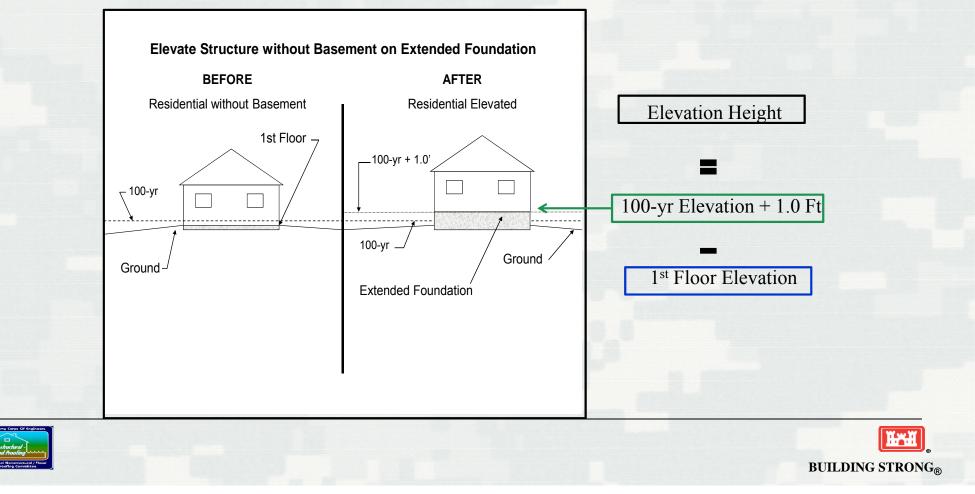

- > 1 Story with Basement
- Block Foundation
- Basement Windows
- > Wood Frame
- > Detached Garage



Sample Structure Elevations (Stages)



Sample Structure Inventory Sheet

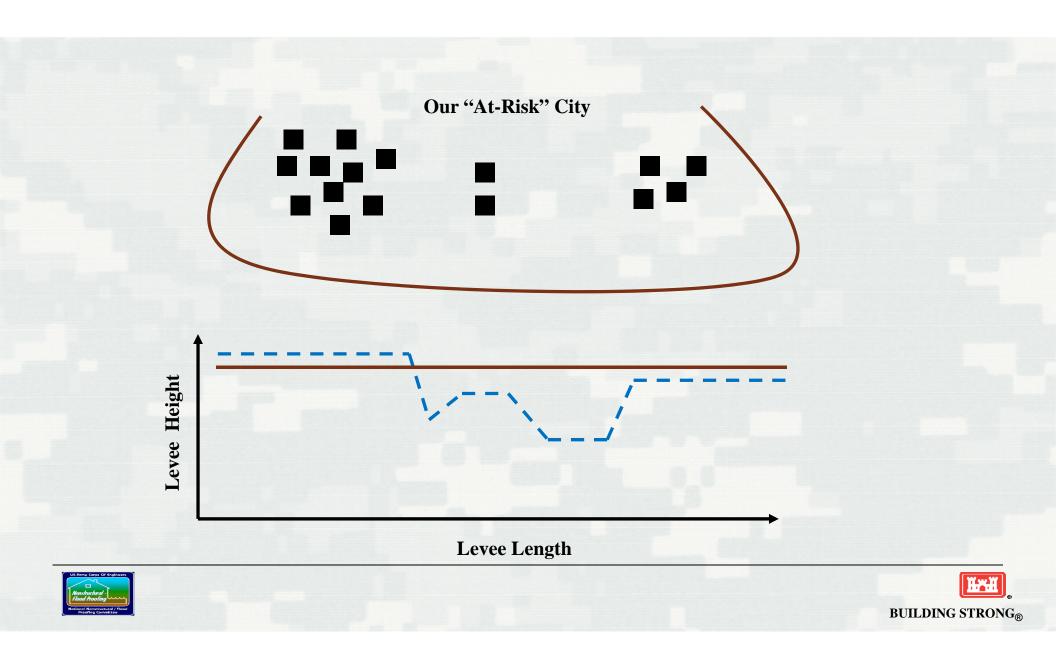


Assessing Structures for Nonstructural Mitigation Measures

Elevation Height

Elevation on Extended Foundation

(before)



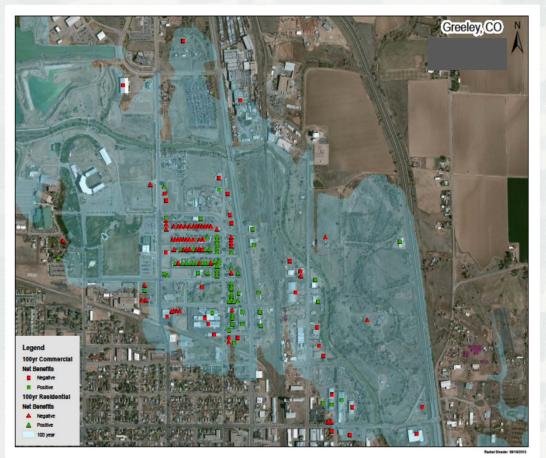
ID	STREET	СІТУ	Nonstructural Technique	100yr Cost	Annualized Cost	Benefits (x1000)	BCR	Net Benefit
400802	110 FREEDLAND DR	Harwood	Flood Wall	348,000	19,245	10.761	0.56	-8,484
400667	438 LIND BLVD	Harwood	Elevate Structure	123,330	6,820	10.181	1.49	3,360
400707	106 RIVERSHORE DR	Harwood	Elevate Structure	112,176	6,203	2.100	0.34	-4,103
400754	324 RIVERTREE BLVD	Harwood	Elevate Structure	118,513	6,554	10.363	1.58	3,809
400007	17373 25 ST SE	Harwood Twp	Buy Out	129,564	7,165	12.832	1.79	5,667
400008	2551 173 AVE SE	Harwood Twp	Buy Out	113,870	6,297	10.018	1.59	3,721
400009	2623 173 AVE SE	Harwood Twp	Buy Out	147,854	8,177	10.397	1.27	2,220
400025	2769 173 AVE SE	Harwood Twp	Buy Out	123,074	6,806	4.205	0.62	-2,601
400009	2623 173 AVE SE	Harwood Twp	Buy Out	147,854	8,177	10.397	1.27	2,220
400001	17369 25 ST SE	Harwood Twp	Elevate Main Floor	112,176	6,203	14.768	2.38	8,565
400002	17135 25 ST SE	Harwood Twp	Elevate Main Floor	113,114	6,255	13.632	2.18	7,377
400004	17201 27 ST SE	Harwood Twp	Elevate Main Floor	112,661	6,230	21.166	3.40	14,936
400005	2569 172 AVE SE	Harwood Twp	Elevate Main Floor	113,566	6,280	12.193	1.94	5,913
400006	17283 26 ST SE	Harwood Twp	Elevate Main Floor	111,885	6,187	12.316	1.99	6,129
400010	2675 173 AVE SE	Harwood Twp	Elevate Main Floor	109,137	6,035	19.609	3.25	13,574
400011	2651 173 AVE SE	Harwood Twp	Elevate Main Floor	110,236	6,096	20.908	3.43	14,812
400012	17321 27 ST SE	Harwood Twp	Elevate Main Floor	108,070	5,976	16.894	2.83	10,918

Nonstructural Economic Results

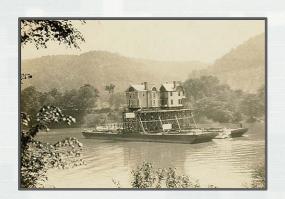
Remember to use all of the benefits for the entire damage area, not just the buildings with a positive BCR

 Costs
 Benefits

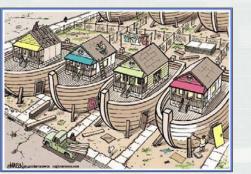
 124,706
 212,740
 BCR = 1.71


Nonstructural Investigations with GIS

- Geo-reference structure location
 - Residential
 - o Commercial
 - o Industrial
 - o Agricultural
 - Critical Facility
- Tie to Assessor's Data
- Flood Hazards


Nonstructural Investigations with GIS

Area of Flooding Detailed Structure Inventory Residential Assessment Commercial Assessment Net Benefit Based Benefit to Cost Ratios



Nonstructural Flood Risk adaptive Measures for Flood Risk Management Economic Considerations for Nonstructural Analysis

We know that there are structures at risk of flooding, why do we need to perform

economics?

The federal government will partner on a study to determine economic feasibility, but implementation will require that the feasibility study determines the benefits to be greater than the costs.

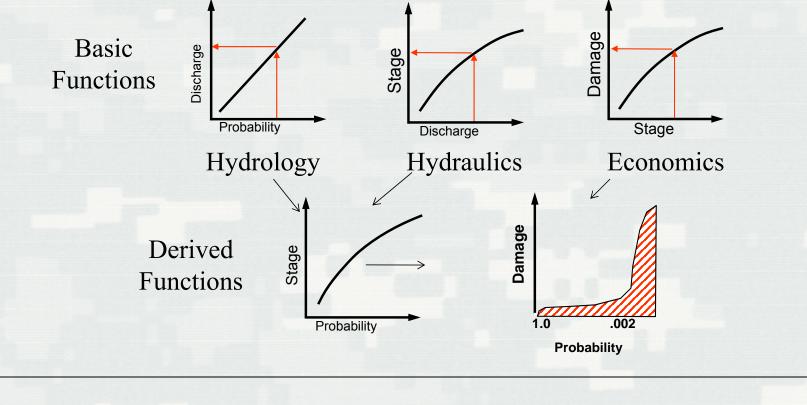
The Chief of Engineers makes recommendations to Congress for flood risk reduction projects that are supported by economic feasibility studies.

These studies evaluate the performance of an array of engineering alternatives with respect to a "no-action" alternative.

Engineering alternatives can be structural, nonstructural, or a combination of both.

Flood Risk

Flood Risk = f [(Probability of Flooding) x (Consequences)]


Probability of Flooding is the frequency of flooding or how often does flooding occur in a particular location.

Consequences are the potential damages and life-loss associated with flooding. Structures (residential, commercial, critical, public, and industrial), land use (agricultural, urban, public), and infrastructure (highways, roads, rail, utilities) are the potentially damageable assets. <u>Reduce the consequences of flooding and risk is reduced</u>. Nonstructural measures are invaluable wherein the goal is to reduce flood damages without modifying the characteristics of the flood event.

Derived Probability-Damage Relationship

Economic Consequences of Flood Risk

- Damage to Property
- Potential for Life Loss
- Emergency Costs
- Business Losses
- Social Effects

Damage to Property

- Residential
- Commercial
- Industrial
- Critical Facilities
- Critical Infrastructure
- Public
- Agricultural

Acceptable Emergency Costs

- Public: Response, Relief, Overtime and Debris Removal
- Private: Evacuation, Clean-up, Restoration

Business Losses

- Higher Operating Costs
- Lost Production

Social Effects

- Mortality
- Vulnerability
- Sustainability / Resiliency
- Cohesion (neighbors and neighborhoods)
- Historical/Cultural

Investment in Public Infrastructure

- The Federal government in an investor in public works infrastructure
- Similar to businesses investing in production facilities and services with the goal of earning a return on investment
- The expected return on investment is expressed in monetary terms

Measurements of Return on Investment

- Annual income (or benefits) as a percentage of the initial investment amount
- Net Benefit Estimate
- Benefit-to-Cost Ratio

Note: The above are different techniques that fundamentally measure the same investment performance

Measurement of Economic Benefits

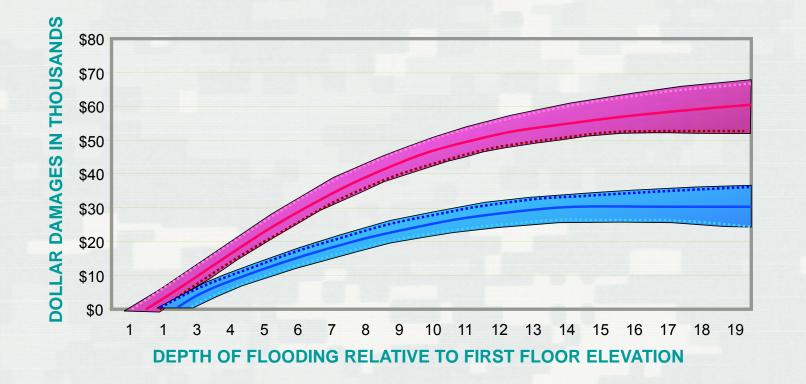
- For flood risk management studies, future flood damages can only be estimated based on the statistical probability of occurrence.
- The "when" and "where" of future flood events cannot be known with absolute certainty.
- The history of specific past flood events is not a reliable indicator of flood damages that may occur in the future for a full range of possible flood events

Measurement of Economic Benefits

- Using statistical probabilities, an estimate of the average damages per year for a given area under the "no-action [existing conditions]" scenario can be derived.
- Similar estimates of average damages per year for the same area can be made assuming a Federal investment in flood risk measures is in place
- The reduction in annual damages between the two scenarios is the definition of economic benefits of the project (annual national income generated)

Measurement of Economic Costs

- The economic costs of a project is the sum of all resources committed to generating economic benefits
- These costs are estimated as the monetary equivalent of include all lands needed, environmental damages created, and pubic or private monies expended.
- Costs also include the "interest cost" incurred since these resources can no longer be used or invested for other purposes that earn a similar rate of interest (opportunity costs.)
- The interest rate used to estimate these interest costs are revised annually by the U.S. Department of the Treasury


Measurement of Economic Costs

- The sum of all economic costs must be converted to an average annual equivalent for the purpose of establishing a common basis for comparison to economic benefits
- Total costs are converted to an annual equivalent through a technique called "amortization"
- Amortization is exactly the same technique used to calculate the monthly or yearly payment on a loan (car, house)
- The size of the annual cost (or payment) is influenced by the interest rate and the number of years over which the payments are spread out--- typically the economic life of the project

Depth-percent Damage Curves with Uncertainty Residential, One-story, No Basement, \$75,000 Value

Without Project Depth-Percent Damages

(One-story, No Basement Residential Valued at \$75,000)

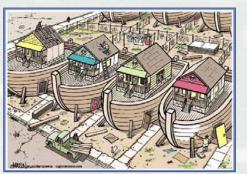
Depth of Flooding	Flood Stage	Depth Damage Curve	Mean Structure Damage	Depth Damage Curve	Mean Content Damage
-2	84.5	0.000	\$0.00	0.000	\$0.00
-1	85.5	0.025	\$1.88	0.024	\$1.80
0	86.5	0.134	\$10.05	0.081	\$6.08
1	87.5	0.233	\$17.48	0.133	\$9.98
2	88.5	0.321	\$24.08	0.179	\$13.43
3	89.5	0.401	\$30.08	0.220	\$16.50
4	90.5	0.471	\$35.33	0.257	\$19.28
5	91.5	0.532	\$39.90	0.288	\$21.60
6	92.5	0.586	\$43.95	0.315	\$23.63
7	93.5	0.632	\$47.40	0.338	\$25.35
8	94.5	0.672	\$50.40	0.357	\$26.78
9	95.5	0.705	\$52.88	0.372	\$27.90
10	96.5	0.732	\$54.90	0.384	\$28.80
11	97.5	0.754	\$56.55	0.392	\$29.40
12	98.5	0.772	\$57.90	0.397	\$29.78
13	99.5	0.785	\$58.88	0.400	\$30.00
14	100.5	0.795	\$59.63	0.400	\$30.00
15	101.5	0.802	\$60.15	0.400	\$30.00
16	102.5	0.807	\$60.53	0.400	\$30.00

Net Project Benefits

- Net project benefits are simply the numerical difference between the annual benefits and the annual costs
- The project is economically justified if the value of net benefits is greater than or equal to "zero"
- Even if net benefits are "zero", the project is creating a return that is at least equal to the "interest rate" used in calculating the "interest cost". This means that the project is earning annual income that is at least equal to other investment opportunities.

Benefit-to-Cost Ratio

- The benefit-to-cost ratio is calculated by dividing annual benefits by annual costs
- The project is economically justified if the benefit-to-cost ratio is greater than or equal to 1.0 to 1.0
- Even if the benefit-to-cost ratio is exactly 1.0 to 1.0, then, again, the project is creating a return that is at least equal to the "interest rate" used in calculating the "interest cost". This means that the project is earning annual income that is at least equal to other investment opportunities.



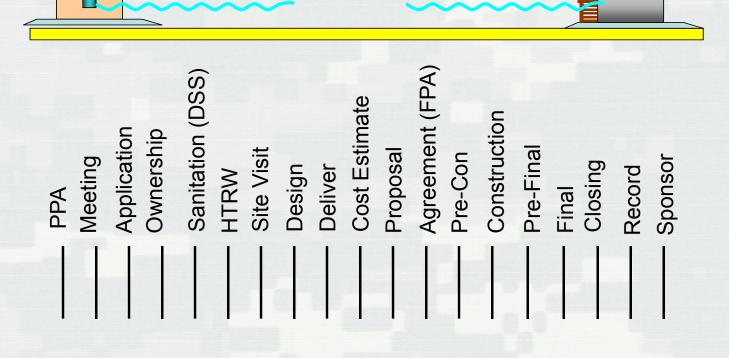
USACE Nonstructural Flood Proofing Workshop

Implementation of Nonstructural Measures

by Mary Weidel USACE - Detroit District National Nonstructural Flood Proofing Committee Advisor

Implementation...How Did We Get Here?

USACE Project Implementation Requirements:


- Economic Feasibility (requires positive BCR)
- Federal Interest
- Local Partner (cost-share, administration, project support)
- Implementation Plan
- Project Partnering Plan

Flood Proofing Implementation Process

Suggested Implementation Process

19 Potential Steps to success

Project Partnering Agreement (PPA)	Proposal		
Meeting	Flood Proofing Agreement (FPA)		
Application	Pre-Construction		
Ownership	Construction		
Decent, Safe and Sanitary (DSS)	Pre-Final		
HTRW	Final		
Site Visit	Closing		
Design	Record		
Deliver	Sponsor		
Cost Estimating			

Project Partnering Agreement (PPA)

- Agreement between government and the nonfederal sponsor
- Identifies the provisions of the project
 - Scope, cost, cost share, responsibilities
 - Limits deviation
 - Requires participation in NFIP
 - Describes use of evacuated lands
- PPA drafter should be PDT member involved with the formulation and familiar with project

Post PPA Activities

- Communication with sponsor and public
- Aerial photography to document existing conditions
- Mapping
 - ► Tracts / Parcels
 - ► Structures
 - Verification of data (It will change)
- Project Coordination Team (PCT)
- Implementation procedures

Project Coordination Team (PCT)

- Required by PPA
- Purpose
 - Provide consistent and effective communication
 - Oversight of project implementation Acquisition
 - Make recommendations to District Engineer
- Participants
 - Project Manager
 - Senior representatives (sponsor & government
 - Co-chaired by PM & sponsor
 - Technical expertise as required

Implementation Procedures

- Required by PPA
- Purpose
 - Provide consistent and effective communication
 - Oversight of project implementation Acquisition
 - Make recommendations to District Engineer

Participants

- Project Manager
- Senior representatives (sponsor and government)
- Co-chaired by PM and Local Sponsor
- Technical expertise as required

Implementation Procedures Manual

• Purpose

- Describes and documents how project will be implemented
- Allows for consistent implementation

• Contents

- Description of processes
- Samples of all working documents

• Execution - Memorandum of Agreement (MOA)

Determination of Implementation Procedures

- Design
- Cost Estimates
- Construction (Contracting Procedures)
- Construction inspection
- Method of Payment
- Closeout
- Operation and Maintenance (O&M)

Design – General Overview

Methods

- Traditional (USACE)
- Nontraditional (USACE)
- Nontraditional (Homeowner)

Advantages/Disadvantages

- Cost
- Liability
- Quality
- Timeliness

Design – Traditional (USACE)

Traditional - Detailed design and specifications (USACE or AE)

Advantages

- Total control of design
- More accurate Independent Government Estimates (IGE) and contractor proposals
- Easier inspections
- Timeliness

- Longer preparation time Liability
- Higher design cost
- Increased risk of change order
- Limited flexibility
- Liability issues

Design – Nontraditional (USACE)

- Nontraditional Guide Plans and Specifications provided to homeowner (USACE or AE).
 - Utilizes a scope of work, diagrammatic drawings, and standardized details and specifications.
 - Relies on competent contractors.

Advantages

- Design consistency
- Standardized design/details
- Reduced design cost
- Less time to prepare
- More flexible
- Reduced liability
- Disadvantages
 - Inconsistency in final product
 - Difficult to do change order

Design – Nontraditional (Homeowner)

- Nontraditional Homeowner's AE prepares design.
 - Flood proofing criteria provided to homeowner.
 - Based on Flood Proofing criteria, NFIP and building codes.

Advantages

- Total control of design
- More accurate/consistent cost estimates and contractor proposals
- Easier inspections
- Reduced liability for Government
- Reduced design cost

- Inconsistency in final product
- Timeliness

Cost Estimating (USACE)

Independent Government Estimate (IGE)

Methods

- Manual
- Combination Manual/computer generated
- Computer generated (cost model)

Advantages / Disadvantages

- Cost
- Quality
- Consistency
- Timeliness

Construction-Traditional (USACE Contract)

• **Traditional** – Construction performed by Government Contractor (USACE)

Advantages

- Multiple structures under one work order
- Ability to assure reputable contractors
- Warranties, bonding, release of liens, etc

- Higher costs
- Increased government liability
- Meet FARS & Davis Bacon wages
- Increased administrative cost
- Limited opportunity for local (small) contractors

Construction Nontraditional (Homeowner Contract)

 Nontraditional – Construction performed by homeowners' contractor (Real Estate Flood Proofing Agreement). Homeowner responsible for contractor performance

Advantages

- Government liability significantly reduced
- FARS/Davis Bacon not required
- Lower construction cost
- More opportunity for local (small) contractors

- Usually one structure per agreement
- Limited economy of scale
- Limited quality control
- Timeliness

Inspection – Traditional (USACE)

 Traditional – Government inspector required to regularly be on site (USACE or AE)

Advantages

• Excellent Quality control

- High cost
- High government Liability

Inspection - Nontraditional (USACE/Homeowner)

- Nontraditional (Inspection by homeowner)
 - Homeowner and local code enforcement (where applicable) responsible for contractor performance
 - Government inspection (verification) required at designated stages of construction

Advantages

- Low cost
- Low government Liability

Disadvantages

• Poor quality control

Inspection – Nontraditional (Homeowner/AE)

- Nontraditional Inspection performed by homeowner's AE
 - Homeowner's AE and local code enforcement (where applicable) responsible for contractor performance

Advantages

- Low cost
- Minimal government liability

- Inconsistent quality control
- Possible coercion

Payment Process

Traditional

Progress payments Potential delays due to processing Significant documentation required

Nontraditional

No progress payments Full payment made at closing Minimal documentation required

Landowners Meeting

- After Executed PPA and post PPA activities
- Required by PL 91-646 (for acquisitions only)
- Public meeting, workshop or both
- Project scope
- Acquisition procedures described
- Flood Proofing procedures described
- Identification of eligible structures
- Initiation of application process for participation

Application Process (Real Estate)

- Homeowner must apply to participate (unless mandatory)
- Tenants must also apply
- Application acts as right-of-entry
- Real Estate verifies ownership and identifies any deed problems (tax liens, mortgages etc.)

HTRW / Asbestos Inspections

- Concurrent with verification of application
- Conducted during implementation for residential structures
- Phase I inspections conducted during study phase for NR
- Asbestos impacted by flood proofing removed at project cost
- HTRW to be impacted by flood proofing must be remediated by homeowner prior to initiation of project, structures may drop out at this point (possible impact to BC)

Decent Safe and Sanitary Issues

- Required by PL 91-646 for acquisitions
- Flood Proofers provided with same benefits
- Typically involves sanitary disposal
- Potable water
- Inspections conducted by local health departments

Implementation Process

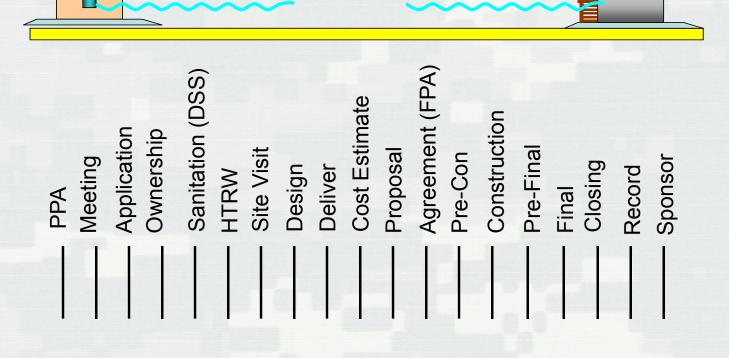
- Site Visit (Implementation Team)
- Prepare design (GP&S)
- Deliver design to homeowner
- Homeowner solicits proposals
- Prepare Government estimate (IGS)
- Compare IGS, Contractor proposals & negotiate.
- Flood proofing Agreement

Construction Cost Estimate

- Micro Computer Aided Cost Engineering System (MCASES), 2nd Generation (MII)
- Districts moving toward using a Cost Model specifically developed for Flood Proofing Implementation.
 - Based on detailed design or guide plans
 - Models based on structure specific information
 - Estimates meet all cost estimating requirements and guidelines in current Corps regulations and technical publications. (ER 1110-2-1302 Civil Works Cost Engineering)
 - Produces a labor, equipment, material, and supply breakdown for line items of work in construction cost estimates
 - Estimates will support any contracting method.

Flood Proofing Agreement

- Must have RE administrative approval from HQ
- Contract between government and homeowner
- Authorizes homeowner to have structure flood proofed
- Identifies not-to-exceed amount
- Identifies contractor
- Restricts future development
- Recorded with elevation certificate



Flood Proofing Implementation Process

National Nonstructural/ Flood Proofing Committee

Questions / Comments

Flood Risk Management with Nonstructural Flood Proofing Techniques Pocket Tool: Planning Matrix for Screening Alternatives

								000	DAP	AGE R	EDU	спо	N M	EASU	RES					
					NON	-STR	исти	RAL P	ame	ATION	HEAS	URES	1					UCTUR	AL MIT	GATO
		le vettor on ound attorn	e vetion on	e vettor on atta or	e vetion on	e vetion on	- location	system optimizen	ood walls and	ood wall a and weeks with ostares	ry Pood oofing	Wet Plood	ood Warring	ood Plain	NF1	tigetion 1		In Work	E.	versions
	REDUCTION MATRIX	043	106	020	0 2	0 0	2	63	63	630	δč	36	22	23	e a	C Z	0	3	6	ŏ
	Shallow (<3 ft)		Y			Y												¥		Y
1	Nodersta (3 to 6 ft)	Y	Y		Ŷ					Y									Y	Ŷ
ł	Deep (greater than 6 ft) Flood Velocity	Ŷ	N	Ŷ	Ŷ	Ŷ	Ŷ	Ÿ	Ŷ	Ŷ	N	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ
i	Slow (less than 3 fps)	¥	Y	Y	¥	Y	Y	Y	Y	Y	Y	¥	Y	Y	Y	Y	Y	¥	Y	Y
i	Moderata (3 to 5 fps)	N	N		Y	Y		Y		Y		N							Y	Y
5	Fast (greater than 5 fps)	N	N	N	Ŷ	N	Y	Ŷ	Y	Y	N	N	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Y	Ŷ
Î	First Flooding Yes (less than 1 hour)	¥	Y		~	Y	¥	¥	~	N		N		Y	¥	¥	¥	~	~	¥
ł	No	Ý	Ý	Ý	Ý	Ý	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ		Ŷ	Ý	Ŷ	Ý	Ý	Ý
ſ	Ice and Debris Flow											_								
	Yes	N	N		Y							N						Ŷ	Y	Ŷ
	No	Y	Ŷ	Y	Y	Y	Y	Ÿ	Y	Y	Y	¥	Y	Y	Ÿ	Ŷ	Ŷ	Y	Y	Ŷ
1	Site Location Coastal Flood Plain	—	-	—	-							_	-	-	-	-	-		—	_
I	Beach Front	N	N	N	¥	N	Y	Y	N	N	N	N	Y	Y	Y	Y	N	3	N	N
	Interior (Low Velocity)	Y	Ŷ		Ŷ		Ŷ		Ŷ			Y					N		N	N
	Riverine Flood Plain	¥	Y	Ŷ	¥	Ŷ	Y	Y	Y	¥	Y	Y	Ŷ	Ŷ	Ÿ	Ť	Ŷ	¥	Y	Y
	Soil Type											~								
1	Permeable Impermeable	Y	Y	T V	Ţ	Y V	Y	Y	Y	N	N	Y	Y		Y	Y	Y	T V	- Y	Y
	Structure Foundation	-														-				
	Slab on Grade	Y	Y	Y	Ϋ́	Y	Y	Y	Y	Y	Y	Y	Ŷ	Ŷ	Ŷ	Y	Y	Ϋ́	Y	Y
l	Crawl Space	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
l	Basement	¥	N	N	N	N	Y	Y	Y	Ŷ	N	Y	Ŷ	Y	Ŷ	¥	Ŷ	¥	Y	Y
ł	Structure Construction Concrete or Masonry		TY		Ŷ	Ŷ		Ŷ	Ŷ		Y		Ŷ		Ŷ		Ŷ	Y	v	
5	Netal	÷	÷,	_		Ŷ				Ŷ		Ŷ							÷.	Ý
2	Wood	Ý	Y			Ŷ						Ŷ							Y	Y
1	Structure Condition				_							_				_				
Ī	Excellent to Good	Y		Y												Y	Ŷ	Y	Y	Y
	Pair to Poor	N	N	N	N	N	N	Ŷ	Y	Ŷ	N	N	Ŷ	Ŷ	Ŷ		Ŷ	Ŷ	Ŷ	Y
	Economic Structure Protected	¥	Y	Y	¥		Y	Y	¥	Y	Y		N		N	Y	Y	¥	Y	¥
	Cost to Implement	M	M	M	M	M		H	M	M	L	_	L	_	L	_	_	_	H	H
	Potential Flood Insurance Cost Reduction	_	-	_	_	_	_	_	_	_	_	_	_	_	-		-	_	_	_
ł	(Residential)	¥.	Y	Y	Y	Y	Y	Y	N	N	N	N	N	Y	•	Y	Y	¥	Y	Y
Î	Potential Flood Insurance Cost Reduction	Y	Y	Y	¥	Y	Y	Y	¥	Y	Y	Y	N	Y		Y	Y	¥	Y	Y
	(Commercial) Potential Adverse Flooding Impact on Other	-	+-	-	-		-		-	_	-	-	-	-	⊢	-	-	-	-	
	Property	N	N	N	N	Y	N	N	Y	Y	N	N	N	Y	N	N	Y	Y	۲	Y
ŝ	Property Reduction in Admin Costs of NFIP	N	N	N	N	Y	Y	Y	N	N	N	N	N	٠	•	,	,	,	,	,
í	Reduction in Costs of Disaster Relief	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	¥	Y	Y
ļ	Reduction in Emergency Costs	N	N	N	N	N	Y	Y	N	N	N	N	N	N	N	,	Y	Y	Y	Y
ŝ	Reduction in Damage to Public Infrastructure	N	N	N	N	N	Y	Y	N	N	N	N	N	N	N	1	Y	Y	Y	Y
Í	Potential for Catastrophic Demages if Design Elevation Exceeded	N	N	N	N	N	N	N	Y	Y	Y	N	N	N	N	N	N	Y	Y	N
	Promotes Flood Plain Development	N	N	N	N	N	N	N	N	N	N	N	N	N	٠	N	Y	¥	Y	Y
1	Environmental																			
	Ecosystem Restoration Possible	N	N	N	N	N	Y	Y	N	N	N	N	N	N	N	N	N	N	N	N
ł	Potential Adverse Environmental Impact	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	¥	Y	Y
i	Recreation																			
1	Recreation Potential	N	N	N	N	N	Y	Y	N	N	N	N	N	N	N	,	N	N	Y	N
	Social																			
	Community Remains Intect	Y	Y	Y	YN	YN	N	N Y	YN	Y N	YN	YN	Y	YN	YN	÷	Y	Y	Y	Y
	Population Protected																			

Flood Damage Reduction Matrix

- Planning Tool
- Quick Reference Guide for Field Assessment
- Considers Nonstructural as well as Structural Measures
- Automation in Progress
 - o <u>http://www.usace.army.mil/Missions/CivilWorks/ProjectPlanning/nfpc.aspx</u>
 - Assess one structure at a time
 - Laptop accessible
 - Future capability as app for downloading to tablets and phones

Flood Damage Reduction Matrix

Г								FLOC	D DAI	MAGE	REDU	CTION	MEAS	URES						
L	February 2015					NO	NSTRUG	TURA	. MITIG	ATION	MEASU	JRES					STRU	CTURAI MEAS	L MITIG	ATON
IΓ															NFIP					
	FLOOD DAMAGE REDUCTION MATRIX	Elevation on Foundation Walls	Elevation on Piers	Elevation on Posts or Columns	Elevation on Piles	Elevation on Fill	Relocation	Buyout/ Acquisition	Floodwalls & Levees	Floodwalls & Levees w/ Closures	Dry Flood Proofing	Wet Flood Proofing	Flood Warning Preparedness	Flood Plain Regulation	Flood Insurance	Flood Mitigation 1	Channel	Levee/Wall	Dams	Diversions

Flood Characteristics

	Flood Depth																			
	Shallow (<3 ft)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Moderate (3 to 6 ft)	Υ	Y	γ	Y	Y	Y	Y	Y	Y	Ν	γ	Υ	Y	Y	Y	Y	Y	Ŷ	Y
tics	Deep (greater than 6 ft)	Y	Ν	Y	Y	γ	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y	Y	Y
eristic	Flood Velocity																			
acte	Slow (less than 3 fps)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ŷ	Y
ara	Moderate (3 to 5 fps)	Ν	Ν	Y	Y	Y	Y	Y	Y	Y	Ν	N	Y	Y	Y	Y	Y	Y	Y	Y
S	Fast (greater than 5 fps)	Ν	Ν	N	Y	Ν	Y	Y	Y	Y	Ν	N	Y	Y	Y	Y	Y	Y	Y	Y
ing	Flash Flooding																			
В	Yes (less than 1 hour)	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	N	Y	Y	Y	Y	Y	Y	Ŷ	Y
e E	No	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Ice and Debris Flow																			
	Yes	Ν	Ν	Ν	Y	Y	Y	Y	Y	Y	Ν	N	Y	Y	Y	Y	Y	Y	Y	Y
	No	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Site Characteristics

\$	Site Location																			
tic	Coastal Flood Plain																			
eris	Beach Front	Ν	Ν	Ν	Y	Ν	Y	Y	Ν	Ν	Ν	Ν	Y	Y	Y	Y	Ν	2	Ν	Ν
act	Interior (Low Velocity)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Ν	Ν
ara	Riverine Flood Plain	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ċ	Soil Type																			
Site	Permeable	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	Ν	Y	Y	Y	Y	Y	Y	Y	Y	Y
5	Impermeable	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Building Characteristics

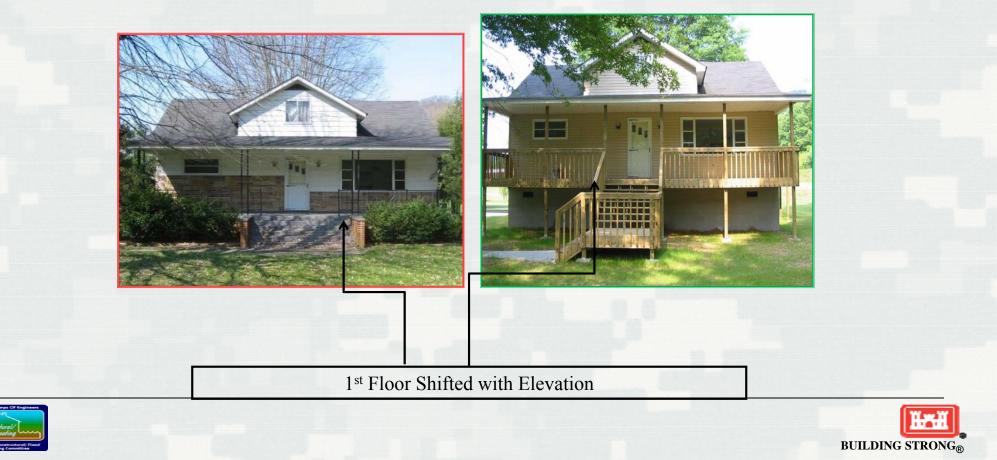
	Structure Foundation																			
8	Slab on Grade	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
istic	Crawl Space	Y	Y	Y	Y	Y	Y	Y	γ	Y	Ν	Υ	γ	γ	Y	Y	γ	Y	γ	Y
teri	Basement	Y	Ν	Ν	Ν	Ν	Y	Y	γ	Y	Ν	Y	Y	у	Y	Y	Y	Y	Y	Y
ac	Structure Construction																			
har	Concrete or Masonry	Y	Y	Y	Y	Y	Y	Y	γ	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y
g Ch	Metal	Y	Y	Y	Y	Y	Y	Y	γ	Y	Υ	Υ	Υ	Y	Y	Y	Y	Y	Y	Y
ding	Wood	Y	Y	Y	Y	Y	Y	Y	γ	Y	Y	Y	Y	Y	Y	Y	Y	γ	γ	Y
Build	Structure Condition																			
ā	Excellent to Good	Y	Y	Y	Y	Y	Y	Y	γ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Fair to Poor	Ν	N	N	Ν	Ν	N	Y	Y	Y	N	N	Y	Y	Y	3	Y	Y	Y	Y

Economic, Environmental, Recreation, and Social Characteristics

	Economic																			
	Structure Protected	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	5	Ν	Y	Y	Y	Y	Y
	Cost to Implement	М	М	М	М	М	н	н	М	М	L	L	L	L	L	H/M	Н	Н	н	н
3	Potential Flood Insurance Cost Reduction (Residential)	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Y	-	Y	Y	Y	Y	Y
ristics	Potential Flood Insurance Cost Reduction (Commercial)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y	-	Y	Y	Y	Y	Y
ctei	Potential Adverse Flooding Impact on Other Property	Ν	Ν	Ν	Ν	Y	Ν	Ν	Y	Y	Ν	Ν	Ν	Y	Ν	Ν	Υ	Y	Y	Y
ara	Reduction in Admin Costs of NFIP	Ν	N	Ν	Ν	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	6	-	3	7	7	7	7
Chara	Reduction in Costs of Disaster Relief	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Reduction in Emergency Costs	Ν	N	Ν	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	3	Y	Y	Y	Y
ocial	Reduction in Damage to Public Infrastructure	Ν	N	Ν	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	3	Y	Y	Y	Y
n/S	Potential for Catastrophic Damages if Design Elevation Exceeded	Ν	N	Ν	Ν	Ν	Ν	Ν	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y	N
tion,	Promotes Flood Plain Development	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	8	Ν	Y	Y	Y	Y
rea	Environmental																			
R/Reci	Ecosystem Restoration Possible	Ν	N	Ν	Ν	Ν	Y	Y	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N
R/B	Potential Adverse Environmental Impact	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N	Ν	Y	Y	Y	Y
NEI	Recreation																			
5	Recreation Potential	Ν	N	Ν	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	3	Ν	Ν	Y	N
NED	Social																			
	Community Remains Intact	Y	Y	Y	Y	Y	N	Ν	Y	Y	Y	Y	Y	Y	Y	4	Y	Y	Y	Y
	Population Protected	Ν	Ν	N	Ν	Ν	Y	Y	N	N	N	N	Y	Ν	N	3	Y	Y	Y	Y
	Potential Structure Marketability Increase	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	N	5	N	Y	Y	Y	Y	Y

Matrix Example Residential Structure

Example Use of Nonstructural Matrix


Matrix Characteristic	Assessment
Flood Depth - Shallow (less than 3 feet)	Y
Flood Velocity – Slow (less than 3 fps)	Y
Flash Flooding – Yes (less than 1 hour)	Y
Site Location – Riverine Floodplain	Y
Soil Type - Permeable	Y
Structure Construction – Wood	Y
Economics – Potential Flood Insurance Cost Reduction	Y
Social – Community Remains Intact	Y

Potential Measure = Elevation on Extended Foundation Walls

Matrix Example Result: Elevation on Foundation Walls

Elevation on Foundation Walls

(before)

